Skip to main content

Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application

  • Chapter
Lactic Acid Bacteria: Genetics, Metabolism and Applications

Abstract

Starter inhibition by bacteriophage infection in dairy fermentations can limit the usage of specific bacterial strains used in the manufacture of Cheddar, Mozzarella and other cheeses and can result in substantial economic losses. A variety of practical measures to alleviate the problem of phage infection have been adopted over the years but has invariably resulted in a very limited number of strains which can withstand intensive usage in industry. The application of genetic techniques to improve the phage-resistance of starter cultures for dairy fermentations has been intensively studied for the last 20 years to a point where this approach now has significant potential to alleviate the problem. This paper highlights the recent findings and developments that have been described in the literature that will have an impact on improvement of the phage-resistance of starter cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackermann H-W DuBow MS (1987) Bacteriophage taxonomy. In: Viruses of Prokaryotes, Vol. 1 (pp 1–11). CRC Press, Boca Raton, FL.

    Google Scholar 

  • Akçelik M (1999) A phage DNA injection-blocking type resistance mechanism encoded by chromosomal DNA in Lactococcus lactis subsp. lactis PLM-18. Milchwissenschaft 53: 619–622.

    Google Scholar 

  • Allison GE Klaenhammer TR (1998) phage-resistance mechanisms in lactic acid bacteria. Int. Dairy J. 8: 207–226.

    Google Scholar 

  • Anba J, Bidnenko E, Hillier A, Ehrlich SD Chopin M-C (1995) Characterisation of the lactococcal abiD1 gene coding for phage abortive infection. J. Bacteriol. 177: 3818–3823.

    PubMed  CAS  Google Scholar 

  • Batt CA, Erlandson K Bsat N (1995) Design and implementation of a strategy to reduce bacteriophage infection of dairy starter cultures. Int. Dairy J. 5: 949–962.

    Google Scholar 

  • Benbadis L, Garet JR Hartley DL (1991) Purification, properties and sequence specificity of Ss/I, a new typell restriction endonuclease from Streptococcus salivarius ssp. thermophilus. Appl. Environ. Microbiol. 57: 3677–3678.

    Google Scholar 

  • Bester BH Lombard SH (1975) Protection of starter cultures against bacteriophages by propagation in a phage-resistant medium. South African J. Dairy Technol. 7: 235–240.

    Google Scholar 

  • Bickle TA Kruger DH (1993) Biology of DNA restriction. Microbiol. Rev. 57: 434–450.

    PubMed  CAS  Google Scholar 

  • Bidnenko E, Ehrlich SD Chopin M-C (1995) Phage operon involved in sensitivity to the Lactococcus lactis abortive infection mechanism AbiD1. J. Bacteriol. 177: 3824–3829.

    PubMed  CAS  Google Scholar 

  • Bissonnette F, Labrie S, Deveau H, Lamoureux M Moineau S (2000) Characterization of mesophilic mixed starter cultures used for the manufacture of aged Cheddar cheese. J. Dairy Sci. 83: 620–627.

    Article  PubMed  CAS  Google Scholar 

  • Bolotin A, Manger S, Malarme K, Ehrlich SD Sorokin A (1999) Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Antonie Van Leeuwenhoek 76: 27–76.

    Article  PubMed  CAS  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD Sorokin A. (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731–753.

    Article  PubMed  CAS  Google Scholar 

  • Bouchard JD Moineau S (2000) Homologous recombination between a lactococcal bacteriophage and the chromosome of its host strain. Virology 270: 65–75.

    Article  PubMed  CAS  Google Scholar 

  • Bouchard JD, Dion E Moineau S. (2000) Characterization of a novel phage-resistance mechanism in Lactococcus lactis. 95th Annual Meeting of the American Dairy Science Association. July 24–28. Baltimore, MD. J. Dairy Sci. 83 (Suppl. 1): 132.

    Google Scholar 

  • Boucher I Moineau S (2001) Phages of Lactococcus lactis: an ecological and economical equilibrium. Recent Res. Dev. Virol. 3: 243–256.

    CAS  Google Scholar 

  • Boucher I, Emond E, Dion E, Montpetit D Moineau S (2000) Microbiological and molecular impacts of AbiK on the lytic cycle of Lactococcus lactis phages of the 936 and P335 species. Microbiol. 146: 445–453.

    CAS  Google Scholar 

  • Boucher I, Emond É, Parrot M Moineau S (2001) DNA sequence analysis of three Lactococcus lactis plasmids encoding phage-resistance mechanisms. J. Dairy Sci. 84: 1610–1620.

    Article  PubMed  CAS  Google Scholar 

  • Boussemaer JP, Shrauwen PP, Sourrouille JL Guy P (1980) Multiple modification/restriction systems in lactic streptococci and their significance in defining a phage typing system. J. Dairy Res. 47: 401–409.

    Article  PubMed  CAS  Google Scholar 

  • Brüssow H (2001) Phages of dairy bacteria. Annu. Rev. Microbiol. 55: 283–303.

    Article  PubMed  Google Scholar 

  • Brüssow H, Bruttin A, Dèsiere F, Lucchini S Foley S, (1998) Molecular ecology and evolution of Streptococcus thermophilus bacteriophages–a review. Virus Genes 16: 95–109.

    Article  PubMed  Google Scholar 

  • Burrus V, Bontemps C, Decaris B Guedon G (2001) Characterization of a novel type II restriction-modification system, Sth368I, encoded by the integrative element ICESt1 of Streptococcus thermophilus CNRZ368. Appl. Environ. Microbiol. 67: 1522–1528.

    Google Scholar 

  • Butler D Fitzgerald GF (2001) Transcriptional analysis and regulation of expression of the ScrFI restriction-modification system of Lactococcus lactis subsp. cremoris ÚC503. J. Bacteriol. 183: 4668–4673.

    Article  PubMed  CAS  Google Scholar 

  • Chung DK, Kim JH Batt CA (1991) Cloning and nucleotide sequence of the major capsid protein from Lactococcus lactis ssp. cremoris bacteriophage F4–1. Gene 101: 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Chung DK, Chung SK Batt CA (1992) Antisense RNA directed against the major capsid protein from Lactococcus lactis ssp. cremoris bacteriophage F4–1 confers partial resistance to the host. Appl. Microbiol. Technol. 37: 79–83.

    Google Scholar 

  • Cluzel P -J, Chopin A, Ehrlich SD Chopin M-C (1991) Phage abortive infection mechanism from Lactococcus lactis ssp. lactis, expression of which is mediated by an iso-ISS] element. Appl. Environ. Microbiol. 57: 3547–3551.

    Google Scholar 

  • Coakley M, Fitzgerald GF Ross RP (1997) Application and evaluation of phage-resistance-and bacteriocin-encoding plasmid pMRC01 for the improvement of dairy starter cultures. Appl. Environ. Microbiol. 63: 1434–1440.

    Google Scholar 

  • Coffey AG, Fitzgerald GF Daly C (1989) Identification and characterisation of a plasmid encoding abortive infection from Lactococcus lactis ssp. lactis ÚC811. Neth. Milk. Dairy J. 43: 229–244.

    Google Scholar 

  • Coffey AG, Fitzgerald GF Daly C (1991a) Cloning and characterisation of the determinant for abortive infection from the lactococcal plasmid pCI829. J. Gen. Microbiol. 143: 1355–1362.

    Google Scholar 

  • Coffey AG, Costello V, Daly C Fitzgerald GF (1991b) Plasmid encoded bacteriophage insensitivity in members of the genus Lactococcus with special reference to pCI829. In: Dunny GM, Cleary PP McKay LL (Eds.) Genetics and Molecular Biology of Streptococci, Lactococci and Enterococci (p 131–135 ). American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Coffey A, Stokes D, Fitzgerald GF Ross RP (2001) Traditional and molecular approaches to improving bacteriophage-resistance of Cheddar and Mozzarella starters. Ir. J. Agric. Fd. Res. 40: (2) (in press).

    Google Scholar 

  • Coleman J, Hirashima A, Inokuchi Y, Green PJ Inouye M (1985) A novel immune system against bacteriophage infection using complementary RNA (micRNA). Nature 315: 601–603.

    Article  PubMed  CAS  Google Scholar 

  • Crow V, Martley FG, Coolbear T Roundhill S (1995) The influence of phage-assisted lysis of Lactococcus lactis subsp. lactis ML8 on Cheddar cheese ripening. Int. Dairy J. 5: 451–472.

    Google Scholar 

  • Dai G, Su P, Allison GE, Geller BL, Zhu P, Kim WS Dunn NW (2001) Molecular characterization of a new abortive infection system (AbiU) from Lactococcus lactis LL51–1. Appl. Environ. Microbiol. 67: 5225–5232.

    Google Scholar 

  • Daly C, Fitzgerald GF Davis R (1996) Biotechnology of lactic acid bacteria with special reference to bacteriophage-resistance. Antonie van Leeuwenhoek 70: 99–110.

    Article  PubMed  CAS  Google Scholar 

  • Davis R, van der Lelie D, Mercenier A, Daly C Fitzgerald GF (1993) ScrFI restriction-modification system of Lactococcus lactis subsp. cremoris UC503: cloning and characterization of two ScrFI methylase genes. Appl. Environ. Microbiol. 59: 777–785.

    Google Scholar 

  • Deng Y-M, Harvey ML, Liu CQ Dunn NW (1997) A novel plasmid-encoded phage abortive infection system for Lactococcus lactis biovar diacetylactis. FEMS Microbiol. Lett. 146: 149–154.

    Google Scholar 

  • Deng YM, Liu CQ Dunn NW (1999) Genetic organisation and functional analysis of a novel abortive infection system, AbiL, from Lactococcus lactis. J. Biotechnol. 67: 135–149.

    Article  PubMed  CAS  Google Scholar 

  • Deng YM, Liu CQ Dunn NW (2000) LidI, a plasmid-encoded type I restriction and modification system in Lactococcus lactis. DNA Seq. 11: 239–245.

    PubMed  CAS  Google Scholar 

  • Dickely F, Nilsson D, Hansen EB Johansen E (1995) Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol. Microbiol. 15: 839–847.

    Google Scholar 

  • Dinsmore PK Klaenhammer TR (1994) Phenotypic consequences of altering the copy number of abiA, a gene responsible for aborting bacteriophage infections in Lactococcus lactis. Appl. Environ. Microbiol. 60: 1129–1136.

    PubMed  CAS  Google Scholar 

  • Dinsmore PK Klaenhammer TR (1995) Bacteriophage-resistance in Lactococcus. Mol. Biotechnol. 4: 297–314.

    Article  PubMed  CAS  Google Scholar 

  • Dinsmore PK Klaenhammer TR (1997) Molecular characterisation of a genomic region in a Lactococcus bacteriophage that is involved in its sensitivity to the phage defence mechanism AbiA. J. Bacteriol. 179: 2949–2957.

    PubMed  CAS  Google Scholar 

  • Dinsmore PK, O’ Sullivan DJ Klaenhammer TR (1998) A leucine repeat motif in AbiA is required for resistance of Lactococcus lactis to phages representing three species. Gene 212: 5–11.

    CAS  Google Scholar 

  • Djordjevic GM, O’ Sullivan DJ, Walker SA, Conkling MA Klaenhammer TR (1997a) Bacteriophage-triggered defence systems: phage adaptation and design improvements. Appl. Environ. Microbiol. 63: 4370–4376.

    Google Scholar 

  • Djordjevic GM, O’Sullivan DJ, Walker SA, Conkling MA Klaenhammer TR (1997b) Triggered-suicide system designed as a defense against bacteriophages. J. Bacteriol. 179: 6741–6748.

    PubMed  CAS  Google Scholar 

  • Duplessis M Moineau S (2001) Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages. Mol. Microbiol. 41: 325–336.

    Article  PubMed  CAS  Google Scholar 

  • Durmaz E Klaenhammer TR (1995) A starter culture rotation strategy incorporating paired restriction-modification and abortive infection bacteriophage defences in a single Lactococcus lactis strain. Appl. Environ. Microbiol. 61: 1266–1273.

    PubMed  CAS  Google Scholar 

  • Durmaz E Klaenhammer TR (2000) Genetic analysis of chromosomal regions of Lactococcus lactis acquired by recombinant lytic phages. Appl. Environ. Microbiol. 66: 895–903.

    Article  PubMed  CAS  Google Scholar 

  • Durmaz E, Higgins DL Klaenhammer TR (1992) Molecular characterisation of a second abortive phage resistance gene present in Lactococcus lactis ssp. lactis ME2. J. Bacteriol. 174: 7463–7469.

    PubMed  CAS  Google Scholar 

  • Émond E, Holler BJ, Boucher PA, Vandenbergh P, Vedamuthu ER, Kondo JK Moineau S (1997) Phenotypic and genetic characterisation of the bacteriophage abortive infection mechanism AbiK from Lactococcus lactis. Appl. Environ. Microbiol. 63: 1274–1283.

    Google Scholar 

  • Émond E, Dion E, Walker SA, Vedamuthu ER, Kondo JK Moineau S (1998) AbiQ, an abortive infection mechanism from Lactococcus lactis. Appl. Environ. Microbiol. 64: 4748–4756.

    Google Scholar 

  • Émond É, Laval] EER, Drolet G, Moineau S LaPointe G (2001) Molecular characterization of a theta replication plasmid and its use for development of a two-component food-grade cloning system for Lactococcus lactis. Appl. Environ. Microbiol. 67: 1700–1709.

    Google Scholar 

  • Feirtag JM McKay LL (1987) Thermoinducible lysis of temperature-sensitive Streptococcus cremoris strains. J. Dairy Sci. 70: 1779–1784.

    Article  Google Scholar 

  • Fitzgerald GF, Daly C, Brown LR Gingeras TR (1982) ScrFI: a new sequence-specific endonuclease from Streptococcus cremoris. Nucleic Acid Res. 10: 8171–8179.

    Google Scholar 

  • Fitzgerald GF, Twomey DP, Daly C Coffey AG (1995) Bacteriophage-resistance in Lactococcus: molecular characterization of the ScrFI restriction/modification system from Lactococcus lactis subsp. cremoris ÚC503. Dev Biol Stand. 85: 581–590.

    PubMed  CAS  Google Scholar 

  • Foley S, Lucchini S, Zwahlen MC Brussow H (1998) A short noncoding viral DNA element showing characteristics of a replication origin confers bacteriophage-resistance to Streptococcus thermophilus. Virology 250: 377–387.

    Article  PubMed  CAS  Google Scholar 

  • Forde A Fitzgerald GF (1999) Bacteriophage defence systems in lactic acid bacteria. Antonie van Leeuwenhoek 76: 89–113.

    Article  PubMed  CAS  Google Scholar 

  • Forde A, Fitzgerald GF Daly C (1999) Identification of four phage-resistance plasmids from Lactococcus lactis ssp. cremoris HO2. Appl. Environ. Microbiol. 65: 1540–1547.

    Google Scholar 

  • Garbutt KC, Kraus J Geller BL (1997) Bacteriophage-resistance in Lactococcus lactis engineered by replacement of a gene for a bacteriophage receptor. J. Dairy Sci. 80: 1512–1519.

    Article  CAS  Google Scholar 

  • Garvey P, van Sinderen D, Twomey DP, Hill C Fitzgerald GF (1995a) Molecular genetics of bacteriophage and natural phage defence systems in the genus Lactococcus. Int. Dairy J. 5: 905947.

    Google Scholar 

  • Garvey P, Fitzgerald GF Hill C (1995b) Cloning and DNA sequence analysis of two abortive infection phage resistance determinants from the lactococcal plasmid pNP40. Appl. Environ. Microbiol. 61: 43214328.

    Google Scholar 

  • Garvey PA, Hill C Fitzgerald GF (1996) The lactococcal plasmid pNP40 encodes a third bacteriophage resistance mechanism, one which affects phage DNA penetration. Appl. Environ. Microbiol. 62: 676–679.

    Google Scholar 

  • Garvey P, Rince A, Hill C Fitzgerald GF (1997) Identification of a RecA homolog (RecALp) on the conjugative lactococcal phage-resistance plasmid pNP40: evidence of a role for chromosomally encoded RecAL in abortive infection. Appl. Environ. Microbiol. 63: 1244–1251.

    Google Scholar 

  • Gautier M Chopin MC (1987) Plasmid-determined systems for restriction and modification activity and abortive infection in Streptococcus cremoris. Appl. Environ. Microbiol. 53: 923–927.

    PubMed  CAS  Google Scholar 

  • Gireesh T, Davidson BE Hillier AJ (1992) Conjugal transfer in Lactococcus lactis of a 68-kb pair chromosomal fragment containing the structural gene for the peptide bacteriocin nisin. Appl. Environ. Microbiol. 58: 1670–1676.

    Google Scholar 

  • Guimont C, Henry P Linden G (1993) Restriction-modification in Streptococcus thermophilus: isolation and characterisation of a type II restriction endonuclease Sth455I. Appl. Microbiol. Biotechnol. 39: 216–220.

    Google Scholar 

  • Gulstrom TJ, Pearce L E, Sandine W E Elliker PR (1979) Evaluation of commercial phage inhibitory media. J. Dairy Sci. 62: 208–221.

    Article  Google Scholar 

  • Harrington A Hill C (1991) Construction of a bacteriophageresistance derivative of Lactococcus lactis ssp. lactis 425A by using the conjugal plasmid pNP40. Appl. Environ. Microbiol. 57: 3405–3409.

    PubMed  CAS  Google Scholar 

  • Harrington A Hill C (1992) Plasmid involvement in the formation of a spontaneous bacteriophage insensitive mutant Lactococcus lactis. FEMS Microbiol. Lett. 96: 132–142.

    Google Scholar 

  • Hickey RM, Twomey DP, Ross RP Hill C (2001) Exploitation of plasmid pMRC01 to direct transfer of mobilizable plasmids into commercial lactococcal starter strains. Appl. Environ. Microbiol. 67: 2853–2858.

    Google Scholar 

  • Hill C (1993) Bacteriophage and bacteriophage-resistance in lactic acid bacteria. FEMS Microbiol. Lett. 12: 87–108.

    CAS  Google Scholar 

  • Hill C, Pierce K Klaenhammer TR (1989) The conjugative plasmid pTR2030 encodes two bacteriophage defence mechanisms in lactococci, restriction-modification (R+/M+) and abortive infection (Hsp+). Appl. Environ. Microbiol. 55: 2416–2419.

    Google Scholar 

  • Hill C, Miller LA Klaenhammer TR (1990a) Cloning, expression, and sequence determination of a bacteriophage fragment encoding bacteriophage-resistance in Lactococcus lactis. J. Bacteriol. 172: 6419–6426.

    PubMed  CAS  Google Scholar 

  • Hill C, Miller LA Klaenhammer TR (1990b) Nucleotide sequence and distribution of the pTR2030 resistance determinant (hsp) which aborts bacteriophage infection in lactococci. Appl. Environ. Microbiol. 56: 2255–2258.

    Google Scholar 

  • Hill C, Miller LA Klaenhammer TR (1991) In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. J. Bacteriol. 173: 4363–4370.

    Google Scholar 

  • Huggins AR Sandine WE (1979) Selection and charaterisation of phage insensitive lactic streptococci. J. Dairy Sci. 62: 70–71.

    Google Scholar 

  • Hughes BF McKay LL (1992) deriving phage insensitive lactococci using a food-grade vector encoding phage and nisin resistance. J. Dairy Sci. 75: 914–923.

    Google Scholar 

  • Jarvis AW (1988) Conjugal transfer in lactic streptococci of plasmid-encoded insensitivity to prolate-and small isometric-headed bacteriophages. Appl. Environ. Microbiol. 54: 777–784.

    PubMed  CAS  Google Scholar 

  • Jarvis AW (1989) Bacteriophages of lactic acid bacteria. J. Dairy Sci. 72: 3406–3428.

    Article  Google Scholar 

  • Jarvis AW (1992) Analysis of phage-resistance mechanisms encoded by lactococcal plasmid pAJ2074. Can. J. Microbiol. 39: 252–258.

    Article  Google Scholar 

  • Jarvis AW, Fitzgerald GF, Mata M, Mercenier A, Neve H, Powell 1B, Ronda C, Saxelin M Teuber M (1991) Species and types of phages of lactococcal bacteriophages. Intervirology 32: 2–9.

    CAS  Google Scholar 

  • Josephsen J Klaenhammer TR (1990) Stacking of three different restriction and modification systems in Lactococcus lactis by co-transformation. Plasmid 23: 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Josephsen J Neve H (1998) Bacteriophages and lactic acid bacteria. In: Salminen S van Wright A (Eds.) Lactic Acid Bacteria: Microbiology and Functional Aspects, 2nd Edn. (pp 385–436 ). Marcel Dekker, New York.

    Google Scholar 

  • Josephsen J, Andersen N, Behrndt E, Brandsborg E, Christiansen G, Hansen MB, Hansen S, Nielsen EW Vogensen (1994) An ecological study of of lytic bacteriophages of lactococcal bacteriophages of Lactococcus lactis subsp. cremoris isolated in a cheese plant over a 5-year-period. Int. Dairy J. 4: 123–140.

    Google Scholar 

  • Josephsen J, Jorgen-Jensen B Nyengaard NR (1998) Determination of the recognition sequence of the type II restriction endonuclease, LlaCI, from Lactococcus lactis W15. FEMS Microbiol. Lett. 163: 25–29.

    Google Scholar 

  • Kelly W, Dobson J, Jorck-Ramberg D, Fitzgerald GF Daly C (1990) Introduction of bacteriophage-resistance plasmids into commercial Lactococcus starter cultures. FEMS Microbiol. Rev. 87: Abst. C20.

    Google Scholar 

  • Khosravi L, Sandine WE Ayres JW (1991) Evaluation of a newly-formulated bacteriophage inhibitory medium for cultivation of thermophilic lactic acid bacteria. Cultered Dairy Products 29: 49.

    Google Scholar 

  • Kim SG Batt CA (1991) Antisense mRNA-mediated bacteriophage-resistance in Lactococcus lactis ssp. lactis. Appl. Environ. Microbiol. 57: 1109–1113.

    PubMed  CAS  Google Scholar 

  • Kim SG, Bor Y-C Batt CA (1992) Bacteriophage-resistance in Lactococcus lactis ssp. lactis using antisense ribonucleic acid. J. Dairy Sci. 75: 1761–1767.

    CAS  Google Scholar 

  • Klaenhammer TR (1984) Interactions of bacteriophage with lactic streptococci. Adv. Appl. Microbiol. 30: 1–29.

    Article  CAS  Google Scholar 

  • Klaenhammer TR (1987) Plasmid-directed mechanisms for bacteriophage defence in lactic streptococci. FEMS Microbiol. Rev. 46: 313–325.

    CAS  Google Scholar 

  • Klaenhammer TR (1991) Development of bacteriophage resistant strains of lactic acid bacteria. Biochem. Soc. Trans. 19: 675–681.

    PubMed  CAS  Google Scholar 

  • Klaenhammer TR Fitzgerald GF (1994) Bacteriophage and bacteriophage-resistance. In: Gasson MJ de Vos WM (Eds.) Genetics and Biotechnology of Lactic Acid Bacteria (pp 106168 ). Blackie Academic and Professional, Glasgow.

    Google Scholar 

  • Klaenhammer TR Sanozky RB (1985) Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phage-resistance, nisin resistance and lactose-fermenting ability: evidence for a high-frequency conjugative plasmid responsible for abortive infection of virulent bacteriophage. J. Gen. Microbiol. 131: 1531–1541.

    PubMed  CAS  Google Scholar 

  • Kraus J Geller BL (2001) Cloning of genomic DNA of Lactococcus lactis that restores phage sensitivity to an unusual bacteriophage sk1-resistant mutant. Appl. Environ. Microbiol. 67: 791–798.

    Article  PubMed  CAS  Google Scholar 

  • Labrie S Moineau S (2000) Multiplex PCR for detection and identification of lactococcal bacteriophages. Appl. Environ. Microbiol. 66: 987–994.

    Article  PubMed  Google Scholar 

  • Le Marrec C, van Sinderen D, Walsh L, Stanley E, Viegels E, Moineau S, Heinze P, Fitzgerald GF Fayard B (1997) Two groups of bacteriophages infecting Streptococcus thermophilus can be distinguished on the basis of mode of packaging and genetic determinants for major structural proteins. Appl. Environ. Microbiol. 63: 3246–3253.

    Google Scholar 

  • Lepeuple A-S, Vassal L, Cesselin B, Delacroix-Buchet A, Gripon J-C Chapot-Chartier M-P (1998) Involvement of a prophage in the lysis of Lactococcus lactis subsp. cremoris AM2 during cheese ripening. Int. Dairy J. 43: 301–311.

    Google Scholar 

  • Limsowtin GKY, Heap H Lawrence RC (1978). Heterogeneity among strains of lactic streptococci N.Z. J. Dairy Sci. 13: 1–8.

    Google Scholar 

  • Liu C-Q, Leelawatcharamas V, Harvey ML Dunn NW (1996) Cloning vectors for lactococci based on a plasmid encoding resistance to cadmium. Curr. Microbiol. 33: 35–39.

    Google Scholar 

  • Lucchini S, Sidoti J Brussow H. (2000) Broad-range bacteriophage-resistance in Streptococcus thermophilus by insertional mutagenesis. Virology 275: 267–277.

    Article  PubMed  CAS  Google Scholar 

  • Madsen A Josephsen J (1998a) Characterisation of LIaCI, a new restriction-modification system from Lactococcus lactis ssp. cremoris W15. Biol. Chem. 379: 443–449.

    Article  PubMed  CAS  Google Scholar 

  • Madsen A Josephsen J (1998b) Cloning and characterisation of the lactococcal plasmid-encoded type II restriction-modification system, LIaDII. Appl. Environ. Microbiol. 64: 2424–2431.

    PubMed  CAS  Google Scholar 

  • Madsen A Josephsen J (2001) The LIaGI restriction and modification system of Lactococcus lactis W10 consists of only one single polypeptide. FEMS Microbiol. Lett. 200: 91–96.

    CAS  Google Scholar 

  • Madsen A, Westphal C Josephsen J (2000) Characterization of a novel plasmid-encoded HsdS subunit, S.LlaW 12I, from Lactococcus lactis W12. Plasmid 44: 196–200.

    Article  PubMed  CAS  Google Scholar 

  • Madsen SM, Mills D, Djordjevic G, Israelsen H Klaenhammer TR (2001) Analysis of the genetic switch and replication region of a P335-type bacteriophage with an obligate lytic lifestyle on Lactococcus lactis. Appl. Environ. Microbiol. 67: 1128–1139.

    Google Scholar 

  • Mayo B, Hardisson C Brana AF (1991) Nucleolytic activities in Lactococcus lactis ssp. lactis NCDO497. FEMS Microbiol. Lett. 79: 195–198.

    Google Scholar 

  • McGrath S, Seegers JF, Fitzgerald GF van Sinderen D (1999) Molecular characterization of a phage-encoded resistance system in Lactococcus lactis. Appl. Environ. Microbiol. 65: 1891–1899.

    Google Scholar 

  • McGrath S, Fitzgerald GF van Sinderen D (2001) Improvement and optimization of two engineered phage resistance mechanisms in Lactococcus lactis. Appl. Environ. Microbiol. 67: 608–616.

    Google Scholar 

  • McGrath S, Fitzgerald GF van Sinderen D (2002) Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol. Microbiol. 43: 509–520.

    Google Scholar 

  • McLandsborough LA, Kolaetis KM, Requena T McKay LL (1995) Cloning and characterisation of the abortive infection genetic determinant abiD isolated from pBF61 of Lactococcus lactis ssp. lactis KR5. Appl. Environ. Microbiol. 61: 2023–2026.

    Google Scholar 

  • Mills S, Coffey A, O’Sullivan L, Stokes D, Hill C, Fitzgerald GF Ross RP (2002) Use of lacticin 481 to facilitate delivery of the bacteriophage-resistance plasmid, pCBG104 to cheese starters. J. Appl. Microbiol. 92: 238–246.

    Google Scholar 

  • Moineau S (1999) Applications of phage-resistance in lactic acid bacteria. Antonie van Leeuwenhoek 76: 377–382.

    Article  PubMed  CAS  Google Scholar 

  • Moineau S, Fortier J, Ackermann H-W Pandian S (1992) Characterization of lactococcal bacteriophages from Québec cheese plants. Can. J. Microbiol. 38: 875–882.

    Google Scholar 

  • Moineau S, Pandian S Klaenhammer TR (1993a) Restriction-modification systems and restriction endonucleases are more effective on lactococcal bacteriophages that have emerged recently in the dairy industry. Appl. Environ. Microbiol. 59: 197–202.

    Google Scholar 

  • Moineau S, Pandian, S Klaenhammer TR (1993b) Evolution of a lytic bacteriophage via DNA acquisition from the Lactococcus lactis chromosome. Appl. Environ. Microbiol. 60: 1832–1841.

    Google Scholar 

  • Moineau S, Walker SA, Vedamuthu ER Vandenbergh PA (1995a) Cloning and sequencing of LIaDCHI [corrected] restriction/modification genes from Lactococcus lactis and relatedness of this system to the Streptococcus pneumoniae DpnII system. Appl. Environ. Microbiol. 61: 2193–2202.

    Google Scholar 

  • Moineau S, Walker SA, Holler BJ, Vedamuthu ER Vandenbergh PA (1995b) Expression of a Lactococcus lactis phage-resistance

    Google Scholar 

  • mechanism by Streptococcus thermophilus. Appl. Environ. Microbiol. 61: 2461–2466.

    Google Scholar 

  • Moineau S, Borkaev M, Holler BJ, Walker SA, Kondo JK, Vedamuthu ER Vandenbergh PA (1996) Isolation and characterization of lactococcal bacteriophages from cultured buttermilk plants in the United States. J. Dairy Sci. 79: 2104–2111.

    Article  CAS  Google Scholar 

  • Murray NE, Daniel AS, Cowan GM Sharp PM (1993) Conservation of motifs within the unusually variable polypeptide sequences of type I restriction and modification enzymes. Mol. Microbiol. 9: 199–143.

    Google Scholar 

  • Neve H, Krusch U Teuber M (1989) Classification of virulent bacteriophages of Streptococcus salivarius subsp. thermophilus isolated from yoghurt and Swiss-type cheese. Appl. Microbiol. B iotechnol. 30: 624–629.

    Google Scholar 

  • Nyengaard N, Vogensen FK Josephsen J (1993) LIaAI andLlaBI, two type II restriction endonucleases from Lactococcus lactis ssp. cremoris W9 and W56 recognising, respectively, 5’-/GATC3/ and 5’-C/TRYAG-3’. Gene 136: 371–372.

    Google Scholar 

  • Nyengaard N, Vogensen FK Josephsen J (1995) Restriction- modification systems in Lactococcus lactis. Gene 157: 13–18.

    Article  PubMed  CAS  Google Scholar 

  • Nyengaard NR, Falkenberg-Klok J Josephsen J (1996) Cloning and analysis of the restriction-modification system LIaBI, a bacteriophage-resistance system from Lactococcus lactis ssp. cremoris W56. Appl. Environ. Microbiol. 62: 3494–3498.

    Google Scholar 

  • ’ Connor L, Coffey A, Daly C Fitzgerald GF (1996) AbiG, a genotypically novel abortive infection mechanism encoded by plasmid pCI750 of Lactococcus lactis ssp. cremoris UC653. Appl. Environ. Microbiol. 62: 3075–3082.

    Google Scholar 

  • O’ Connor L, Tangney M Fitzgerald GF (1999) Expression, regulation, and mode of action of the AbiG abortive infection system of Lactococcus lactis subsp. cremoris UC653. Appl. Environ. Microbiol. 65: 330–335.

    Google Scholar 

  • O’ Sullivan D, Coffey A, Fitzgerald GF, Hill C Ross RP (1998) Design of a phage-insensitive lactococcal dairy starter via sequential transfer of naturally occurring conjugative plasmids. Appl. Environ. Microbiol. 64: 4618–4622.

    Google Scholar 

  • O’ Sullivan D, Ross RP, Fitzgerald GF Coffey A (2000a) Investigation of the relationship between lysogeny and lysis of Lactococcus lactis in cheese using prophage-targeted PCR. Appl. Environ. Microbiol. 66: 2192–2198.

    Google Scholar 

  • O’ Sullivan D, Twomey DP, Coffey A, Hill C, Fitzgerald GF Ross RP (2000b) Novel type I restriction specificities through domain shuffling of HsdS subunits in Lactococcus lactis. Mol. Microbiol. 36: 866–875.

    Google Scholar 

  • O’ Sullivan D, Ross RP, Twomey DP, Fitzgerald GF, Hill C Coffey A (2001) Naturally occurring lactococcal plasmid pAH90 links bacteriophage-resistance and mobility functions to a food-grade selectable marker. Appl. Environ. Microbiol. 67: 929–937.

    Google Scholar 

  • O’ Sullivan DJ, Hill C Klaenhammer TR (1993) Effect of increasing the copy number of bacteriophage origins of replication, in trans, on incoming-phage proliferation. Appl. Environ. Microbiol. 59: 2449–2456.

    Google Scholar 

  • O’ Sullivan DJ, Zagula K Klaenhammer TR (1995) In vivo restriction by LIaI is encoded by three genes, arranged in an operon with Ila1M, on the conjugative Lactococcus plasmid pTR2030. J. Bacteriol. 177: 134–143.

    Google Scholar 

  • O’ Sullivan DJ, Walker SA, West SG Klaenhammer TR (1996) Development of an expression system using a lytic phage to trigger explosive plasmid amplification and gene expression. Biotechnology 14: 82–87.

    Article  Google Scholar 

  • O’ Sullivan DJ Klaenhammer TR (1998) Control of expression of LlaI restriction in Lactococcus lactis. Mol. Microbiol. 27: 10091020.

    Google Scholar 

  • O’ Sullivan T, van Sinderen D Fitzgerald G (1999) Structural and unctional analysis of pCI65st, a 6.5 kb plasmid from Streptococcus thermophilus NDI-6. Microbiology 145: 127–134.

    Google Scholar 

  • Oberg CJ Broadbent JR (1993) Thermophilic starter cultures: another set of problems. J. Dairy Sci. 76: 2392–2406.

    Article  Google Scholar 

  • Parreira R, Ehrlich SD Chopin M-C (1996) Dramatic decay of phage transcripts in lactococcal cells carrying the abortive infection determinant AbiB. Mol. Microbiol. 19: 221–230.

    Google Scholar 

  • Pillidge CJ, Collins LJ, Ward, LJH, Cantillon BM, Shaw BD, Timmins MJ, Heap HA Polzin KM (2000) Efficacy of four conjugal lactococcal phage-resistance plasmids against phage in commercial Lactococcus lactis subsp. cremoris cheese starter strains. Int. Dy J. 10: 617–625.

    Google Scholar 

  • Platteeuw C, van Alen-Boerrigter I, van Schalkwijk S de Vos WM (1996) Food-grade cloning and expression system for Lactococcus lactis. Appl. Environ. Microbiol. 62: 1008–1013.

    CAS  Google Scholar 

  • Poch MT, Somkuti GA Solaiman DKY (1997) Sth1321, a novel class HS restriction endonuclease of Streptococcus thermophilus ST132. Gene 195: 201–206.

    Google Scholar 

  • Polzin KM, Collins LJ, Lubbers MW Jarvis AW (1996) Effect of various mRNAs on bacteriophage c2 replication. In: Proceedings of 5th Symposium on Lactic Acid Bacteria, Genetics, Metabolism and Applications, Veldhoven, The Netherlands. Abs F2.

    Google Scholar 

  • Prevots F Ritzenthaler P (1998) Complete sequence of the new lactococcal abortive phage-resistance gene abiO. J. Dairy Sci. 81: 1483–1485.

    Article  PubMed  Google Scholar 

  • Prevots F, Daloyau M, Bonin O, Dumont X Tolou S (1996) Cloning and sequencing of the novel abortive infection gene abiH of Lactococcus lactis ssp. lactis biovar. diacetylactis S94. FEMS Microbiol. Lett. 142: 295–299.

    Google Scholar 

  • Prevots F, Talon S, Delpech B, Kaghad M Daloyau M (1998) Nucleotide sequence and analysis of the new chromosomal abortive infection gene abiN of Lactococcus lactis ssp. cremoris 5114. FEMS Microbiol. Lett. 159: 331–336.

    Google Scholar 

  • Quiberoni A, Stiefel JI Reinheimer JA (2000) Characterization of phage receptors in Streptococcus thermophilus using purified cell walls obtained by a simple protocol. J. Appl. Microbiol. 89: 1059–1065.

    Google Scholar 

  • Richardson GH, Cheng CT Young R (1977) Lactic bulk culture system utilising a whey-based bacteriophage inhibitory medium and pH control. J. Dairy Sci. 60: 378–386.

    Article  CAS  Google Scholar 

  • Rince A, Tangney M Fitzgerald GF (2000) Identification of a DNA region from lactococcal phage skl protecting phage 712 from the abortive infection mechanism AbiF. FEMS Microbiol. Lett. 182: 185–191.

    Google Scholar 

  • Sanders ME (1988) phage-resistance in lactic acid bacteria. Biochimie 70: 411–422.

    Google Scholar 

  • Sanders ME Klaenhammer TR (1981) Evidence for plasmid linkage of restriction and modification in Streptococcus cremoris KH. Appl. Environ. Microbiol. 42: 944–950.

    PubMed  CAS  Google Scholar 

  • Sanders ME, Leonard PJ, Sing WD Klaenhammer TR (1986) Conjugal strategy for the construction of fast-acid producing, bacteriophage-resistant lactic streptococci for use in dairy fermentations. Appl. Environ. Microbiol. 52: 1101–1107.

    Google Scholar 

  • Sandine WE (1989) Use of bacteriophage-resistant mutants of lactococcal starters in cheese-making. Neth. Milk Dairy J. 43: 211–219.

    Google Scholar 

  • Sandine WE (1995) Commercial production of dairy starter cultures. In: Cogan TM, Accolas JP (Eds.) Dairy Starter Cultures, 3rd Edn. (pp 191–206 ) VCH Publishers, New York.

    Google Scholar 

  • Sanford JC Johnston SA (1985) The concept of parasite-derived resistance-deriving resistance genes from the parasites own genome. J. Theor. Biol. 113: 395–405.

    Article  Google Scholar 

  • Schouler C, Gautier S, Ehrlich SD Chopin M-C (1998a) Combinational variation of restriction-modification specificities in Lactococcus lactis. Mol. Microbiol. 28: 169–178.

    Google Scholar 

  • Schouler C, Cher F, Lerayer AD Ehrlich SD Chopin M-C (1998b) A type IC restriction-modification system in Lactococcus lactis. J. Bacteriol. 180: 407–411.

    CAS  Google Scholar 

  • Seegers JF, van Sinderen D Fitzgerald GF (2000) Molecular characterization of the lactococcal plasmid pCIS3: natural stacking of specificity subunits of a type I restriction/modification system in a single lactococcal strain. Microbiology 146: 435–443.

    CAS  Google Scholar 

  • Sing WD Klaenhammer TR (1986) Conjugal transfer of bacteriophage-resistance determinants on pTR2030 into Streptococcus cremoris strains. Appl. Environ. Microbiol. 51: 12641271.

    Google Scholar 

  • Sing WD Klaenhammer TR (1990b) Plasmid encoded abortive infection in lactococci: a review. J. Dairy Sci. 73: 2239–2251.

    Article  Google Scholar 

  • Sing WD Klaenhammer TR (1991) Characterization of restriction-modification plasmids from Lactococcus lactis ssp. cremoris and their effects when combined with pTR2030. J. Dairy Sci. 74: 1133–1144.

    Article  Google Scholar 

  • Sing WD Klaenhammer TR (1993) A strategy for rotation of different bacteriophage defences in a lactococcal single-strain starter culture system. Appl. Environ. Microbiol. 59: 365–372.

    PubMed  Google Scholar 

  • Solaiman DKY Somkuti GA (1990) Isolation and characterisation of a type II restriction endonuclease from Streptococcus thermophilus ST117. FEMS Microbiol. Lett. 80: 261–266.

    Google Scholar 

  • Solaiman DKY Somkuti GA (1991) A type II restriction endonuclease from Streptococcus thermophilus. FEMS Microbiol. Lett. 67: 261–266.

    Google Scholar 

  • Solow BT Somkuti GA (2001) Molecular properties of Streptococcus thermophilus plasmid pER35 encoding a restriction modification system. Curr. Microbiol. 42: 122–128.

    Article  PubMed  Google Scholar 

  • Stanley E, Walsh L, van der Zwet A, Fitzgerald GF van Sinderen D (2000) Identification of four loci isolated from two Streptococcus thermophilus phage genomes responsible for mediating bacteriophage resistance. FEMS Microbiol. Lett. 182: 271–277.

    Google Scholar 

  • Stokes D, Ross RP, Fitzgerald GF Coffey A (2001). Application of Streptococcus thermophilus DPC1842 as an adjunct to counteract phage in a predominantly lactococcal Cheddar cheese starter: use in bulk starter culture systems. Le Lait 81: 327–334.

    Article  CAS  Google Scholar 

  • Sturino JM Klaenhammer TR (2002) Expression of antisense RNA against Streptococcus thermophilus bacteriophages. Appl. Environ. Microbiol. 68: 588–596.

    Article  PubMed  CAS  Google Scholar 

  • Su P, Harvey M, Im HJ Dunn NW (1997) Isolation, cloning and characterisation of the abil gene from Lactococcus lactis ssp. lactis M138 encoding abortive phage infection. J. Biotechnol. 54: 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Su P, Im H, Hsieh H, Kang’A S Dunn NW (1999) LIaFI, a type II restriction and modification system in Lactococcus lactis. Appl. Environ. Microbiol. 65: 686–693.

    Google Scholar 

  • Thunell RK, Sandine WE Bodyfelt FW (1981) Phage insensitive multiple strain starter approach to Cheddar cheese making. J. Dairy Sci. 64: 2270–2277.

    Article  Google Scholar 

  • Trotter M, Mills S, Ross RP, Fitzgerald GF Coffey A (2001) The use of cadmium resistance on the phage-resistance plasmid pNP40 facilitates selection for its horizontal transfer to industrial dairy starter lactococci. Lett. Appl. Microbiol. 33: 409–414.

    Google Scholar 

  • Twomey DP, Gabillet N, Daly C Fitzgerald GF (1997) Molecular characterisation of the restriction endonuclease gene (scrFIR) associated with the ScrFI restriction-modification system from Lactococcus lactis ssp. cremoris UC503. Microbiology 143: 2277–2286.

    Article  PubMed  CAS  Google Scholar 

  • Twomey DP, McKay LL O’Sullivan DJ (1998) Molecular characterisation of the Lactococcus lactis LlaKR2I restriction-modification system and effect of an IS982 element positioned between the restriction and modification genes. J. Bacteriol. 180: 5844–5854.

    CAS  Google Scholar 

  • Twomey DP, De Urraza PJ, McKay LL O’Sullivan DJ (2000) Characterization of AbiR, a novel multicomponent abortive infection mechanism encoded by plasmid pKR223 of Lactococcus lactis subsp. lactis KR2. Appl. Environ. Microbiol. 66: 26472651.

    Google Scholar 

  • Walker SA Klaenhammer TR (1998) Molecular characterization of a phage-inducible middle promoter and its transcriptional activator from the lactococcal bacteriophage phi31. J. Bacteriol. 180: 921 931.

    Google Scholar 

  • Walker SA Klaenhammer TR (2000) An explosive antisense RNA strategy for inhibition of a lactococcal bacteriophage. Appl. Environ. Microbiol. 66: 310–319.

    Article  PubMed  CAS  Google Scholar 

  • Ward AC, Davidson BE, Hillier AJ Powell IB (1992) Conjugally transferable phage-resistance activities from Lactococcus lactis DRCI. J. Dairy Sci. 75: 683–691.

    Article  Google Scholar 

  • Whitehead WE, Ayres JW Sandine, WE (1993) A review of starter media for cheese making. J. Dairy Sci. 76: 2344–2353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coffey, A., Ross, R.P. (2002). Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application. In: Siezen, R.J., Kok, J., Abee, T., Schasfsma, G. (eds) Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2029-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2029-8_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6141-6

  • Online ISBN: 978-94-017-2029-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics