Skip to main content

Abstract

We recently reported that the well-studied fermenting bacterium Lactococcus lactis could grow via a respirative metabolism in the presence of oxygen when a heme source is present. Respiration induces profound changes in L.lactis metabolism, and improvement of oxygen tolerance and long-term survival. Compared to usual fermentation conditions, biomass is approximately doubled by the end of growth, acid production is reduced, and large amounts of normally minor end products accumulate. Lactococci grown via respiration survive markedly better after longterm storage than fermenting cells. We suggest that growth and survival of lactococci are optimal under respiration-permissive conditions, and not under fermentation conditions as previously supposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azarkina N, Siletsky S, Borisov V, von Wachenfeldt C, Hederstedt L Konstantinov AA (1999) A cytochrome bb’-type quinol oxidase in Bacillus subtilis strain 168. J. Biol. Chem. 274: 32810–32817.

    Google Scholar 

  • Blank LM, Koebmann BJ, Michelsen O, Nielsen LK Jensen PR (2001) Hemin reconstitutes proton extrusion in an H(+)-ATPasenegative mutant of Lactococcus lactis. J. Bacteriol. 183: 67076709.

    Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731–753.

    Article  PubMed  CAS  Google Scholar 

  • Dukan S Nystrom T (1999) Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J. Biol. Chem. 274: 26027–26032.

    Article  PubMed  Google Scholar 

  • Duwat P, Ehrlich SD Gruss A (1995) The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Mol. Microbiol. 17: 1121–1131.

    Google Scholar 

  • Duwat P, Gruss A, LeLoir Y, Gaudu P (1999) Bactéries lactiques transformées pour leur conférer un métabolisme respiratoire, et levains comprenant lesdites bactéries. French patent application FR2798670. http://ep.espacenet.com/

    Google Scholar 

  • Duwat P, Sourice S, Cesselin B, Lamberet G, Vido K, Gaudu P, Le Loir Y, Violet F, Loubiere P Gruss A (2001) Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J. Bacteriol. 183: 45094516.

    Google Scholar 

  • Duwat P, Sourice S Gruss A (1998) Process for preparing starter cultures of lactic acid bacteria. French patent application FR9809463. http://ep.espacenet.com/

    Google Scholar 

  • Edwards SE, Loder CS, Wu G, Corker H, Bainbridge BW, Hill S Poole RK (2000) Mutation of cytochrome bd quinol oxidase results in reduced stationary phase survival, iron deprivation, metal toxicity and oxidative stress in Azotobacter vinelandii. FEMS Microbiol. Lett. 185: 71–77.

    Google Scholar 

  • Fenton MP (1987) An investigation into the sources of lactic acid bacteria in grass silage. J. Appl. Bacteriol. 62: 181–188.

    Article  Google Scholar 

  • Fridovich I (1989) Superoxide dismutases. An adaptation to a paramagnetic gas. J. Biol. Chem. 264: 7761–7764.

    PubMed  CAS  Google Scholar 

  • Gennis RB Stewart V (1996) Respiration. In: Neidhardt FC (Ed) Escherichia coli and Salmonella: Cellular and Molecular Biology Vol. I (pp 217–261 ). ASM Press, Washington, DC.

    Google Scholar 

  • Georgiou CD, Dueweke TJ Gennis RB (1988) Regulation of expression of the cytochrome d terminal oxidase in Escherichia coli is transcriptional. J. Bacteriol. 170: 961–966.

    PubMed  CAS  Google Scholar 

  • Goldman BS, Gabbert KK Kranz RG (1996) The temperature-sensitive growth and survival phenotypes of Escherichia coli cydDC and cydAB strains are due to deficiencies in cytochrome bd and are corrected by exogenous catalase and reducing agents. J. Bacteriol. 178: 6348–6351.

    PubMed  CAS  Google Scholar 

  • Gory L, Montel MC Zagorec M (2001) Use of green fluorescent protein to monitor Lactobacillus sakei in fermented meat products. FEMS Microbiol. Lett. 194: 127–133.

    Google Scholar 

  • Hansen MC, Palmer RJ Jr, Udsen C, White DC Molin S (2001) Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiology 147: 1383–1391.

    PubMed  CAS  Google Scholar 

  • Hirsch A (1952) The evolution of the lactic acid bacteria. J. Dairy Res. 19: 290–293

    Article  Google Scholar 

  • Kaneko T, Tagahashi M Suzuki H (1990) Acetoin fermentation by citrate-positive Lactococcus lactis subsp. lactis 3022 grown aerobically in the presence of hemin or Cu2+. Appl. Environ. Microbiol. 56: 2644–2649.

    Google Scholar 

  • Kelly WJ, Davey GP Ward LJ (1998) Characterization of lactococci isolated from minimally processed fresh fruit and vegetables. Int. J. Food Microbiol. 45: 85–92.

    Google Scholar 

  • Kim WS, Park JH, Ren J, Su P Dunn NW (2001) Survival response and rearrangement of plasmid DNA of Lactococcus lactis during long-term starvation. Appl. Environ. Microbiol. 67: 4594–4602.

    Google Scholar 

  • Koebmann BJ, Nilsson D, Kuipers OP Jensen PR (2000) The membrane-bound H(+)-ATPase complex is essential for growth of Lactococcus lactis. J. Bacteriol. 182: 4738–4743.

    Article  PubMed  CAS  Google Scholar 

  • Lopez de Felipe F, Starrenburg M J C Hugenholtz J (1997) The role of NADH oxidation in acetoin and diacetyl production from glucose in Lactococcus lactis subsp. lactis MG1363. FEMS Microbiol. Lett. 156: 15–19

    Google Scholar 

  • Macy J, Probst I Gottschalk G (1975) Evidence for cytochrome involvement in fumarate reduction and adenosine 5/ -triphosphate synthesis by Bacteroides fragilis grown in the presence of hemin. J. Bacteriol. 123: 436–442.

    PubMed  CAS  Google Scholar 

  • Meisel J, Wolf, G Hammes WP (1994) Heme-dependent cytochrome formation in Lactobacillus maltaromicus. System. Appl. Microbiol. 17: 20–23

    Google Scholar 

  • Poole RK Cook GM (2000) Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv. Microb. Physiol. 43: 165–224.

    Article  PubMed  Google Scholar 

  • Poquet I, Saint V, Seznec E, Simoes N, Bolotin A Gruss A (2000) HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol. Microbiol. 35: 1042–1051.

    Google Scholar 

  • Ritchey TW Seeley HWJ (1976) Distribution of cytochrome-like respiration in Streptococci. J. Gen. Microbiol. 93: 195–203.

    Article  Google Scholar 

  • Sanders JW, Leenhouts KJ, Haandrikman AJ, Venema G Kok J (1995) Stress response in Lactococcus lactis: cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene. J. Bacteriol. 177: 5254–5260.

    PubMed  CAS  Google Scholar 

  • Siegele DA, Imlay KR Imlay JA (1996) The stationary-phase-exit defect of cydC (surB) mutants is due to the lack of a functional terminal cytochrome oxidase. J. Bacteriol. 178: 6091–6096.

    PubMed  CAS  Google Scholar 

  • Sijpesteijn AK (1970) Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides. Antonie Van Leeuwenhoek 36: 335–348

    Article  PubMed  CAS  Google Scholar 

  • Whittenbury R (1978) Biochemical characteristics of Streptococcus species. Soc. Appl. Bacteriol. Symp. Ser. 7: 51–69

    PubMed  CAS  Google Scholar 

  • Winstedt L, Frankenberg L, Hederstedt L von Wachenfeldt C (2000) Enterococcus faecalis V583 contains a cytochrome bd-type respiratory oxidase. J. Bacteriol. 182: 3863–3866.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gaudu, P. et al. (2002). Respiration capacity and consequences in Lactococcus lactis . In: Siezen, R.J., Kok, J., Abee, T., Schasfsma, G. (eds) Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2029-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2029-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6141-6

  • Online ISBN: 978-94-017-2029-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics