Skip to main content

Metabolism of lactic acid bacteria studied by nuclear magnetic resonance

  • Chapter
Lactic Acid Bacteria: Genetics, Metabolism and Applications

Abstract

The complexity of metabolic and regulatory networks presents a great scientific challenge to an integrated view of how individual components contribute to the overall function. Nuclear magnetic resonance (NMR) spectroscopy is undoubtedly a suitable technique for global investigations of microbial metabolism, since it allows a view into living cells without disturbing the cellular organisation. Therefore, metabolic processes can be monitored in real time under physiological conditions. In the present paper, examples of the application of NMR to study the metabolism of lactic acid bacteria will be given. These include the analysis of labelling patterns in end-products using 13C as a tracer, thereby establishing metabolic pathways, the detection and quantification of intermediates in the pathway of exopolysaccharide biosynthesis, and on line monitoring of glycolytic kinetics to assess the effect of metabolic engineering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antunes A, Rainey FA, Nobre MF, Schumann P, Ramos A, Santos H and da Costa MS (2002) Leuconostoc ficulneus sp. nov., a new lactic acid bacterium isolated from ripened figs, and the reclassification of Lactobacillus fructosus as Leuconostoc fructosus. Int. J. Syst. Evol. Microbiol. 52: 647–655.

    Google Scholar 

  • Bailey JE (2001) Reflections on the scope and the future of metabolic engineering and its connections to functional genomics and drug discovery. Metab. Eng. 3: 111–114.

    Article  PubMed  CAS  Google Scholar 

  • Boels IC, Ramos A, Kleerebezem M and de Vos WM (2001) Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis. Appl. Environ. Microbiol. 67: 3033–3040.

    Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD and Sorokin A (2001) The complete genome sequence of lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731–753.

    Article  PubMed  CAS  Google Scholar 

  • Hollander JA, Brown TR, Ugurbil K and Shulman RG (1979) 13C nuclear magnetic resonance studies of anaerobic glycolysis in suspensions of yeast cells. Proc. Natl. Acad. Sci. USA 76: 6096–6100.

    Google Scholar 

  • Hollander JA, Ugurbil K, Brown TR, Bednar M, Redfield C and Shulman RG (1986) Studies of anaerobic and aerobic glycolysis in Saccharomyces cerevisiae. Biochemistry 25: 203–211.

    Article  Google Scholar 

  • Ferain T, Schanck AN and Delcour J (1996) 13C nuclear magnetic resonance analysis of glucose and citrate end products in an ldhL-ldhD double knockout strain of Lactobacillus plantarum. J. Bacteriol. 178: 7311–7315.

    Google Scholar 

  • Gadian DG (1995) NMR and Its Applications to Living Systems 2nd edn. Oxford Science Publications, Oxford.

    Google Scholar 

  • Gallazo JL, Shanks JV and Bailey JE (1990) Comparison of intracellular sugar-phosphate levels from 31P NMR spectroscopy of intact cells and cell-free extracts. Biotechnol. Bioeng. 35: 1164–1168.

    Google Scholar 

  • Gao S, Mooberry ES and Steele JL (1998) Use of 13C nuclear magnetic resonance and gas chromatography to examine me-thionine catabolism by lactococci. Appl. Environ. Microbiol. 64: 4670–4675.

    Google Scholar 

  • Garrigues C, Loubiere P, Lindley ND and Cocaign-Bousquet M (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J. Bacteriol. 179: 5282–5287.

    PubMed  CAS  Google Scholar 

  • Germond JE, Delley M, D’Amico N and Vincent SJ (2001) Heterologous expression and characterization of the exopolysaccharide from Streptococcus thermophilus Sfi39. Eur. J. Biochem. 268: 149–156.

    Google Scholar 

  • Grivet J-P (2000) NMR and Microorganisms. In: Barbotin J-N and Portais J-C (Eds) NMR in Microbiology: Theory and Applications (pp 27–46 ). Horizon Scientific Press, Wymondham.

    Google Scholar 

  • Hols P, Kleerebezem M, Schanck AN, Ferain T, Hugenholtz J, Del-cour J de Vos WM (1999) Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat. Biotechnol. 17: 588–592.

    Google Scholar 

  • Hols P, Ramos A, Hugenholtz J, Delcour J, de Vos WM, Santos H and Kleerebezem M (1999) Acetate utilization in Lactococcus lactis deficient in lactate dehydrogenase: a rescue pathway for maintaining redox balance. J. Bacteriol. 181: 5521–5526.

    PubMed  CAS  Google Scholar 

  • Hugenholtz J, Kleerebezem M, Starrenburg M, Delcour J, de Vos WM & Hols P (2000) Lactococcus lactis as a cell factory for high-level diacetyl production. Appl. Environ. Microbiol. 66: 4112–4114.

    Google Scholar 

  • Kleerebezem M, van Kranenburg R, Tuinier R, Boels IC, Zoon P, Looijensteijn E, Hugenholtz J and de Vos WM (1999) Exopolysaccharides produced by Lactococcus lactis: from genetic engineering to improved rheological properties? Antonie van Leeuwenhoek 76: 357–365.

    Article  PubMed  CAS  Google Scholar 

  • Lohmeier-Vogel EM, Hahn-Hägerdal B and Vogel HJ (1986) Phosphorous-31 NMR studies of maltose and glucose metabolism in Streptococcus lactis. Appl. Microbiol. Biotechnol. 25: 43–51.

    Google Scholar 

  • London RE (1988) 13C labeling studies of metabolic regulation. Progr. Nucl. Magn. Reson. Spectrosc. 20: 337–383.

    Google Scholar 

  • Nakajima H, Hirota H, Toba T, Itoh T and Adachi S (1992) Structure of the extracellular polysaccharide from slime-forming Lactococcus lactis subsp. cremoris SBT 0495. Carbohydr. Res 224: 245–253.

    Google Scholar 

  • Navon G, Shulman RG, Yamane T, Eccleshal TR, Lam KB, Baronofsky JJ and Marmur J (1979) 31P NMR studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae. Biochemistry 18: 4487–4489.

    Google Scholar 

  • Neves AR, Ramos A, Nunes MC, Kleerebezem M, Hugenholtz J, de Vos WM, Almeida JS and Santos H (1999) In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotechnol. Bioeng. 64: 200–212.

    Google Scholar 

  • Neves AR, Ramos A, Shearman C, Gasson MJ, Almeida JS and Santos H (2000) Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Eur. J. Biochem. 267: 3859–3868.

    Google Scholar 

  • Neves AR, Ventura R, Mansour N, Shearman C, Gasson MJ, May-cock C, Ramos A & Santos H (2002) Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? kinetics of NAD+ and NADH pools measured non-invasively by 13C-NMR. Submitted.

    Google Scholar 

  • Neves AR, Ramos A, Costa H, van Swam I, Hugenholtz J, Kleerebezem m, de Vos WM and Santos H (2002) Effect of different NADH oxidase levels on glucose metabolism of Lactococcus lactis: kinetics of intracellular metabolite pools by in vivo NMR. Submitted.

    Google Scholar 

  • Ramos A & Santos H (1996) Citrate and sugar cofermentation in Leuconostoc oenos, a 13C nuclear magnetic resonance study. Appl. Environ. Microbiol. 62: 2577–2585.

    PubMed  CAS  Google Scholar 

  • Ramos A, Boels IC, de Vos WM and Santos A (2001) Relationship between glycolysis and exopolysaccharide biosynthesis in Lactococcus lactis. Appl. Environ. Microbiol. 67: 33–41.

    Google Scholar 

  • Ramos A, Jordan KN, Cogan TM and Santos H (1994) 13C nuclear magnetic resonance studies of citrate and glucose cometabolism by Lactococcus lactis. Appl. Environ. Microbiol. 60: 1739–1748.

    Google Scholar 

  • Ramos A, Lolkema JS, Konings WN and Santos H (1995) Enzyme basis for pH regulation of citrate and pyruvate metabolism by Leuconostoc oenos. Appl. Environ. Microbiol. 61: 1303–1310.

    Google Scholar 

  • Ramos A, Neves AR, Lopez P and Santos H. Unpublished.

    Google Scholar 

  • Roberts MF, Jacobson, GR, Scot PJ, Mimura CS and Stinson MW (1985) 31P-NMR studies of the oral pathogen Streptococcus mutons: observation of lipoteichoic acid. Biochim. Biophys. Acta 845: 242–248.

    Google Scholar 

  • Santos H and Turner DL (1986) Characterisation of the improved sensitivity obtained using a flow method for oxygenating and mixing cell suspensions in NMR. J. Magn. Reson. 68: 345–349.

    Google Scholar 

  • Shanks JV (2000) In situ NMR systems. In: Barbotin, J-N and Portais J-C (Eds) NMR in Microbiology: Theory and Applications (pp 47–72 ). Horizon Scientific Press, Wymondham, UK.

    Google Scholar 

  • Sheldon JG, Williams SP, Fulton AM and Brindle KM (1996) 31P magnetization transfer study of the control of ATP turnover in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93: 63996404.

    Google Scholar 

  • Szyperski T, Glaser RW, Hochuli M, Fiaux J, Sauer U, Bailey JE and Wüthrich K (1999) Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy. Metab. Eng. 1: 189–197.

    Google Scholar 

  • Thomas TD, Elwood DC & Longyear VM (1979) Change from homo-to heterolactic fermentation by Streptococcus lactis resulting from fructose limitation in anaerobic chemostat cultures. J. Bacteriol. 138: 109–117.

    PubMed  CAS  Google Scholar 

  • Thompson J and Torchia DA (1984) Use of 31P nuclear magnetic resonance spectroscopy and 14C fluorography in studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis. J. Bacteriol. 158: 791–800.

    PubMed  CAS  Google Scholar 

  • Thompson J, Chassy BM and Egan W (1985) Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucok-inase and mannose-phosphotransferase activities. J. Bacteriol. 162: 217–223.

    PubMed  CAS  Google Scholar 

  • Thompson J (1987) Sugar transport in lactic acid bacteria. In: Reizer J and Peterkofsky A (Eds) Sugar Transport and Metabolism in Gram-positive Bacteria (pp 13–38 ). Ellis Horwood Ltd., Chichester.

    Google Scholar 

  • Ugurbil K, Brown TR, den Hollander JA, Glynn P & Shulman RG (1978) High-resolution 13C nuclear magnetic resonance studies of glucose metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 75: 3742–3746.

    Google Scholar 

  • Unkefer CJ and London RE (1984) In vivo studies of pyridine nucleotide metabolism in Escherichia coli and Saccharomyces cerevisiae by carbon-13 NMR spectroscopy. J. Biol. Chem. 259: 2311–2320.

    Google Scholar 

  • Unkefer CJ, Blazer RM and London RE (1983) In vivo determination of the pyridine nucleotide reduction charge by carbon-13 nuclear magnetic resonance spectroscopy. Science 222: 62–65.

    Google Scholar 

  • Ven FJ, van den Hoven HW, Konings RN and Hilbers CW (1991) NMR studies of lantibiotics. The structure of nisin in aqueous solution. Eur. J. Biochem. 202: 1181–1185.

    Google Scholar 

  • Veiga da Cunha M, Firme P, SanRomdo MV and Santos H (1992) Application of 13C nuclear magnetic resonance to elucidate the unexpected biosynthesis of erythritol by Leuconostoc oenos. Appl. Environ. Microbiol. 58: 2271–2279.

    Google Scholar 

  • Veiga da Cunha M, Santos H & van Schaftingen E (1993) Pathway and regulation of erythritol formation in Leuconostoc oenos. J. Bacteriol. 175: 3941–3948.

    Google Scholar 

  • Verhue WM and Tjan FB (1991) Study of the citrate metabolism of Lactococcus lactis subsp. lactis biovar diacetylactis by means of 13C nuclear magnetic resonance. Appl. Environ. Microbiol. 57: 3371–3377.

    PubMed  CAS  Google Scholar 

  • Wand AJ (2001) Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat. Struct. Biol. 8: 926931.

    Google Scholar 

  • Weuster-Botz D & de Graaf AA (1996) Reaction engineering methods to study intracellular metabolite concentrations. In: Sahm H and Wandrey C (Eds) Advances in Biochemical Engineering Biotechnology, Vol. 54 (pp 75–108 ). Springer-Verlag, Berlin.

    Google Scholar 

  • Wilson ID (2000) Multiple hyphenation of liquid chromatography with nuclear magnetic resonance spectroscopy, mass spectrometry and beyond. J. Chromatogr. A 892: 315–327

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ramos, A., Neves, A.R., Santos, H. (2002). Metabolism of lactic acid bacteria studied by nuclear magnetic resonance. In: Siezen, R.J., Kok, J., Abee, T., Schasfsma, G. (eds) Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2029-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2029-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6141-6

  • Online ISBN: 978-94-017-2029-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics