Skip to main content

Abstract

For most metabolic pathways, the uptake of the substrate into the cell represents the first step. This transport reaction can exert a large control on the flux through the pathway, in particular when the substrate concentration becomes limiting. Besides serving a role in the uptake of nutrients and the excretion of metabolic (end)products or drugs, transport systems can have one or more other functions in the physiology of the cell. Two of these functions, control of carbohydrate utilization and regulation of cell volume, have been well established in lactic acid bacteria (LAB). The first example concerns the phosphoenolpyruvate-dependent phosphotransferase system (PTS), which serves a role in the transport of sugars into the cell but also regulates the activity of metabolic pathways, either through regulation of transcription and/or (in)activation of transporters and key enzymes already present. The regulation by the PTS results in a hierarchy in the utilization of sugars and/or adjustment of the first step(s) of a metabolic pathway to the metabolic capacity of the cell and the availability of a particular substrate. The second example relates to the activation of transporters (and mechanosensitive channels), which represents the first mechanism of defence against osmotic stress. The activation by osmotic-upshift of the ATP-binding Cassette (ABC) transporter OpuA from Lactococcus lactis is compared with the activation by osmotic-downshift of mechanosensitive channels. The mechanosensitive channels have been best studied in organisms other than LAB, but the presence of similar systems in LAB, and their conservation of structure, suggest that the postulated functions and mechanisms generally hold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa T, Timasheff SN, (1985) The stabilization of proteins by osmolytes. Biophys. J., 47: 411–414.

    Google Scholar 

  • Blount P, Moe PC (1999) Bacterial mechanosensitive channels: integrating physiology, structure and function. Trends Microbiol. 7: 420–424.

    Article  PubMed  CAS  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis íL1403. Genome Res. 11: 731–753.

    Article  PubMed  CAS  Google Scholar 

  • Botsford JL, Harman JG (1992) Cyclic AMP in prokaryotes. Microbiol. Rev. 56: 100–122.

    Google Scholar 

  • Brochu D, and Vadeboncoeur C (1999). The HPr(Ser) kinase of Streptococcus salivarius: purification, properties, and cloning of the hprK gene. J. Bacteriol. 181: 709–717.

    PubMed  CAS  Google Scholar 

  • Cantor RS (1999) Lipid composition and the lateral pressure profile in bilayers. Biophys. J. 76: 2625–2639.

    Article  PubMed  CAS  Google Scholar 

  • Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282: 2220–2226.

    Article  PubMed  CAS  Google Scholar 

  • Charrier V, Buckley E, Parsonage, D, Galinier A, Darbon E, Jaquinod M, Forest E, Deutscher J, Claiborne A (1997) Cloning and sequencing of two enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvatedependent, phosphotransferase system-catalyzed phosphorylation of a single histidyl residue. J. Biol. Chem. 272: 1416614174.

    Google Scholar 

  • Cohn M, Horibata K (1959) Physiology of the inhibition by glucose of the induced synthesis of ß-galactosidase-enzyme system of Escherichia coli. J. Bacteriol. 78: 624–635.

    PubMed  CAS  Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu. Rev. Microbiol. 45: 569–606.

    Google Scholar 

  • Deutscher J, Engelman R (1984) Purification and characterization of an ATP-dependent protein kinase from Streptococcus feacalis. FEMS Microbiol. Lett. 23: 57–162.

    Google Scholar 

  • Deutscher J, Saier MH Jr (1983) ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes. Proc. Natl. Acad. Sci. U.S.A. 80: 6790–6794.

    Google Scholar 

  • Deutscher J, Sauerwald H (1986) Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase system. J. Bacteriol. 166: 829–836.

    PubMed  CAS  Google Scholar 

  • Deutscher J, Bauer B, Sauerwald H (1993) Regulation of glycerol metabolism in Enterococcus faecalis by phosphoenolpyruvatedependent phosphorylation of glycerol kinase catalyzed by enzyme I and HPr of the phosphotransferase system. J. Bacteriol. 175: 3730–3733.

    PubMed  CAS  Google Scholar 

  • Deutscher J, Kessler U, Hengstenberg W (1985) Streptococcal phosphoenolpyruvate: sugar phosphotransferase system: purification and characterization of a phosphoprotein phosphatase which hydrolyzes the phosphoryl bond in seryl-phosphorylated histidine-containing protein. J. Bacteriol. 163: I203–1209.

    Google Scholar 

  • Deutscher J, Kuster E, Bergstedt U, Charrier V, Hillen W (1995) Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol. Microbiol. 15: 1049–1053.

    Google Scholar 

  • Dills SS, Apperson A, Schmidt MR, Saier MH. Jr (1980) Carbo- hydrate transport in bacteria. Microbiol. Rev. 44: 385–418.

    Google Scholar 

  • Dossonnet V, Monedero V, Zagorec M, Galinier A, Perez-Martinez G, Deutscher J (2000) Phosphorylation of HPr by the bifunctional HPr Kinase/P-ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion. J. Bacteriol. 182: 2582–2590.

    Article  PubMed  CAS  Google Scholar 

  • Doyle RJ, Marquis RE (1994) Elastic, flexible peptidoglycan and bacterial cell wall properties. Trends Microbiol, 2: 57–60.

    Article  PubMed  CAS  Google Scholar 

  • Egeter O, Bruckner R (1996) Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus. Mol. Mocrobiol. 21: 739–749.

    Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26: 597–604.

    CAS  Google Scholar 

  • Evans E, Skalak R (1980) Mechanics and thermodynamics of membranes. CRC Crit. Rev. Bioeng. 3: 181–418.

    Google Scholar 

  • Foucaud C, Poolman B (1992) Lactose transport system of Streptococcus thermophilus. Functional reconstitution of the protein and characterization of the kinetic mechanism of transport. J. Biol. Chem. 267: 22087–22094.

    Google Scholar 

  • Galinier A, Kravanja M, Engelmann R, Hengstenberg W, Kilhoffer MC, Deutscher J, Haiech J (1998) New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc. Natl. Acad. Sci. U.S.A. 95: 1823–1828.

    Google Scholar 

  • Glaasker E, Konings WN, Poolman B (1996) Glycine-betaine fluxes in Lactobacillus plantarum during osmostasis and hyper-and hypoosmotic shock. J. Biol. Chem. 271: 10060–10065.

    Google Scholar 

  • Glaasker E, Heuberger EHML, Konings WN, Poolman B (1998) Mechanism of osmotic activation of the quaternary ammonium compound transporter (QacT) of Lactobacillus plantarum. J. Bacteriol, 180: 5540–5546.

    PubMed  CAS  Google Scholar 

  • Gunnewijk MGW, Poolman B (2000a) Phosphorylation state of HPr determines the level of expression and the extent of phosphorylation of the lactose transport protein of Streptococcus thermophilus. J. Biol. Chem. 275: 34073–34079.

    Google Scholar 

  • Gunnewijk MGW, Poolman B (2000b) HPr(His-P)-mediated phosphorylation differently affects counterflow and proton motive force-driven uptake via the lactose transport protein of Streptococcus thermophilus. J. Biol. Chem. 275: 34080–34085.

    Google Scholar 

  • Gunnewijk MGW, Sulter G, Postma PW, Poolman B (1997) Molecular Mechanisms of Signaling and Membrane Transport. Springer, Berlin, Heidelberg

    Google Scholar 

  • Gunnewijk MGW, Postma PW, Poolman B (1999) Phosphorylation and functional properties of the IIA domain of the lactose transport protein of Streptococcus thermophilus. J. Bacteriol. 181: 632–641.

    PubMed  CAS  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81: 685–740.

    Google Scholar 

  • Heide van der T, Poolman B (2000a) Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane. Proc. Natl. Acad. Sci. USA, 97: 7102–7106.

    Google Scholar 

  • Heide van der T, Poolman B (2000b) Glycine betaine transport in Lactococcus lactis is osmotically regulated at the level of expression and translocation. J. Bacteriol, 182: 203–206.

    Article  Google Scholar 

  • Heide van der T, Stuart MCA, Poolman B. (2001) On the osmotic signal and osmosensing mechanism of an ABC transporter for glycine betaine. EMBO J. 20: 7022–7032.

    Article  PubMed  Google Scholar 

  • Hueck CJ, Hillen W (1995) Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria? Mol. Microbiol. 15: 395–401.

    CAS  Google Scholar 

  • Hutkins R, Morris HA, McKay LL (1985) Galactose transport in Streptococcus thermophilus. Appl. Environ. Microbiol. 50: 772776.

    Google Scholar 

  • Jault JM, Fieulaine S, Nessler S, Gonzalo P, Di Pietro A, Deutscher J, Galinier A (2000) The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose 1,6-bisphosphate binding. J. Biol. Chem. 275: 1773–1780.

    Google Scholar 

  • Jones BE, Dossonnet V, Kuster E, Hillen W, Deutscher J, Klevit RE (1997) Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J. Biol. Chem. 272: 26530–26535.

    Google Scholar 

  • Jones Li, Carballido-Lopez R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell. 104: 913–922.

    Article  PubMed  CAS  Google Scholar 

  • Killian JA, von Heijne G (2000) How proteins adapt to a membrane-water interface. Trend Biochem. Sci, 25: 429–434.

    CAS  Google Scholar 

  • Kim JH, Guvener ZT, Cho JY, Chung KC, Chambliss GH (1995) Specificity of DNA binding activity of the Bacillus subtilis catabolite control protein CcpA. J. Bacteriol. 177: 5129–5134.

    PubMed  CAS  Google Scholar 

  • Knol J, Veenhoff L, Liang WJ, Henderson PJF, Leblanc G, Poolman B (1996) Unidirectional reconstitution into detergent-destabilized liposomes of the purified lactose transport system of Streptococcus thermophilus. J. Biol. Chem. 271: 15358–15366.

    Google Scholar 

  • Konings WN, Poolman B, Driessen At (1989) Bioenergetics and solute transport in lactococci. Crit Rev.Microbiol. 16: 419–476.

    Article  PubMed  CAS  Google Scholar 

  • Kravanja M, Engelmann R, Dossonnet V, Bluggel M, Meyer HE, Frank R, Galinier A, Deutscher J, Schnell N, Hengstenberg W (1999) The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol. Microbiol. 31: 59–66.

    Google Scholar 

  • Levina L, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channets: identification of genes required for MscS activity. EMBO Journal, 18: 1730–1737.

    Google Scholar 

  • Luesink EJ, van Herpen RE, Grossiord BP, Kuipers OP, de Vos WM (1998) Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol. Microbiol. 30: 789–798.

    Google Scholar 

  • Marsh D (1996) Lateral pressure in membranes. Biochim. Biophys. Acta 1286: 183–223.

    Google Scholar 

  • Mason PW, Carbone DP, Cushman RA, Waggoner AS (1981) The importance of inorganic phosphate in regulation of energy metabolism of Streptococcus lactis. J. Biol. Chem. 256: 1861–1866.

    Google Scholar 

  • McGinnis JF, Paigen K (1969) Catabolite inhibition: a general phenomenon in the control of carbohydrate utilization. J. Bacteriol. 100: 902–913.

    PubMed  CAS  Google Scholar 

  • Minton AP, Colclasure GG, Parker JC (1992) Model for the role of macromolecular crowding in regulation of cellular volume. Proc. Natl. Acad. Sci. U.S.A. 89: 10504–10506.

    Google Scholar 

  • Monedero V, Gosalbes MJ, Perez-Martinez G (1997) Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J. Bacteriol. 179: 6657–6664.

    PubMed  CAS  Google Scholar 

  • Monod J (1942) Rescherches sur la croissance des cultures bacteriennes, 2nd ed. Hermann, Paris.

    Google Scholar 

  • Obis D, Guillot A, Gripon, J-C, Renault P, Bolotin A, Mistou M-Y (1999) Genentic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters. J. Bacteriol, 181; 6238–6246.

    PubMed  CAS  Google Scholar 

  • Parsegian VA, Rand RP, Rau DC (1995) Macromolecules and water: probing with osmotic stress. Methods Enzymol. 259: 43–94.

    Article  PubMed  CAS  Google Scholar 

  • Perlman RL, De Crombrugghe B, Pastan I (1969) Cyclic AMP regulates catabolite and transient repression in E. coli. Nature 223: 810–812.

    Article  PubMed  CAS  Google Scholar 

  • Poolman B (1993) Energy transduction in lactic acid bacteria. FEMS Microbiol. Rev. 12: 125–148.

    CAS  Google Scholar 

  • Poolman B and Glaasker E (1998) Regulation of compatible solute accumulation in bacteria. Mol. Microbiol, 29: 397–407.

    Google Scholar 

  • Poolman B, Konings WN (1993) Secondary solute transport in bacteria. Biochim. Biophys. Acta 1183: 5–39.

    Google Scholar 

  • Poolman B, Royer TJ, Mainzer SE, Schmidt BF (1989) Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems. J. Bacteriol. 171: 244–253.

    PubMed  CAS  Google Scholar 

  • Poolman B, Knol J, Mollet B, Nieuwenhuis B, Sulter G (1995) Regulation of bacterial sugar-H+ symport by phosphoenolpyruvate-dependent enzyme I/HPr-mediated phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 92: 778–782.

    Google Scholar 

  • Poolman B, Knol J, van de DC, Henderson PJ, Liang WJ, Leblanc G, Pourcher T, Mus-Veteau 1(1996) Cation and sugar selectivity determinants in a novel family of transport proteins. Mol. Microbiol. 19: 911–922.

    Google Scholar 

  • Poolman B, Blount P, Folgering JHA, Friesen RHE, Moe P, van der Heide T. (2002) How do membrane proteins sense water stress? Mol. Microbiol, 44, 889–902

    CAS  Google Scholar 

  • Reid C, Rand RP (1997) Probing protein hydration and conformational states in solution. Biophys J., 72, 1022–1030.

    Article  PubMed  CAS  Google Scholar 

  • Reizer J, Panos C (1980) Regulation of beta-galactoside phosphate accumulation in Streptococcus pyogenes by an expulsion mechanism. Proc. Natl. Acad. Sci. U.S.A. 77: 5497–5501.

    Google Scholar 

  • Reizer J, Novotny MJ, Hengstenberg W, Saier MH Jr (1984) Properties of ATP-dependent protein kinase from Streptococcus pyogenes that phosphorylates a seryl residue in HPr, a phosphocarrier protein of the phosphotransferase system. J. Bacteriol. 160: 333–340.

    Google Scholar 

  • Reizer J, Sutrina SL, Saier MH, Stewart GC, Peterkofsky A, Reddy P (1989) Mechanistic and physiological consequences of HPr(ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: studies with site-specific mutants of HPr. EMBO J. 8: 2111–2120.

    PubMed  CAS  Google Scholar 

  • Reizer J, Bergstedt U, Galinier A, Kuster E, Saier MH Jr, Hillen W, Steinmetz M, Deutscher J (1996) Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr. J. Bacteriol. 178: 5480–5486.

    PubMed  CAS  Google Scholar 

  • Robillard GT, Lolkema JS (1988) Enzymes II of the phosphoenolpyruvate-dependent sugar transport systems: a review of their structure and mechanism of sugar transport. Biochim. Biophys. Acta 947: 493–519.

    Google Scholar 

  • Romano AH, Brino G, Peterkofsky A, Reizer J (1987) Regulation of beta-galactoside transport and accumulation in heterofermentative lactic acid bacteria. J. Bacteriol. 169: 5589–5596.

    PubMed  CAS  Google Scholar 

  • Sukharev S, Durell SR, Guy HR (2001b) Structural models of the mscl gating mechanism. Biophys. J. 81: 917–936.

    Google Scholar 

  • Sukharev S, Betanzos M, Chiang C-S, Guy HR (200la) The gating mechanism of the large mechanosensitive channel MscL. Nature 409: 720–724.

    Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C. (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368: 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Sukharev SI, Sigurdson WJ, Kung C, Sachs F (1999) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol. 113: 525–540.

    Google Scholar 

  • Thompson J, Torchia DA (1984) Use of 31P nuclear magnetic resonance spectroscopy and 14C fluorography in studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis. J. Bacteriol. 158: 791–800.

    PubMed  CAS  Google Scholar 

  • van den Bogaard PTC, Kleerebezem M, Kuipers OP, de Vos WM (2001) Control of lactose transport, ß-galactosidase activity and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a non-phosphoenolpyruvatedependent phosphotransferase system sugar. J. Bacteriol., 182: 5982–5989.

    Article  Google Scholar 

  • Vaughan EE, van den Bogaard PTC, Catzeddu P, Kuipers OP, de Vos WM (2001) Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus. J. Bacteriol. 183: 1184–1194.

    Article  PubMed  CAS  Google Scholar 

  • Veenhoff LM, Poolman B (1999) Substrate recognition at the cytoplasmic and extracellular binding site of the lactose transport protein of Streptococcus thermophilus. J. Biol. Chem. 274: 33244–33250.

    Google Scholar 

  • Veenhoff LM, Heuberger EHML, Poolman B (2001) The lactose transport protein is a cooperative dimer with two sugar translocation pathways. EMBO J. 20: 3056–3062.

    Article  PubMed  CAS  Google Scholar 

  • Verheul A, Glaasker E, Poolman B, Abee T (1997) Betaine and L-camitine transport in response to osmotic signals in Listeria monocytogenes Scott A. J. Bacteriol., 179: 6979–6985.

    PubMed  CAS  Google Scholar 

  • Verkman, A.S. (2002) Solute and macromolecule diffusion in cellular agueous compartments. Trends Biochem. Sci. 2: 27–33.

    Google Scholar 

  • Viana R, Monedero V, Dossonnet V, Vadeboncoeur C, Perez-Martinez G, Deutscher J (2000) Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol. Microbiol. 36: 570–584.

    Google Scholar 

  • Vodyanoy I, Bezrukow SM, Parsegian VA (1993) Probing alamethicin channels with water-soluble polymers. Size-modulated osmotic action. Biophys. J. 65: 2097–3105.

    Google Scholar 

  • Wehtje C, Beijer L, Nilsson RP, Rutberg B (1995) Mutations in the glycerol kinase gene restore the ability of a ptsGHl mutant of Bacillus subtilis to grow on glycerol. Microbiology 141: 11931198.

    Google Scholar 

  • Weickert MJ, Chambliss GH (1990) Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 87: 6238–6242.

    Google Scholar 

  • Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol. Mol. Biol. Rev. 63: 230–262.

    PubMed  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217: 1214–1222.

    Article  PubMed  CAS  Google Scholar 

  • Ye JJ, Saier MH Jr. (1995) Allosteric regulation of the glucose:H+ symporter of Lactobacillus brevis: cooperative binding of glucose and HPr(ser-P). J. Bacteriol. 177: 1900–1902.

    PubMed  CAS  Google Scholar 

  • Ye JJ, Saier MH Jr. (1996) Regulation of sugar uptake via the phosphoenolpyruvate-dependent phosphotransferase systems in Bacillus subtilis and Lactococcus lactis is mediated by ATP-dependent phosphorylation of seryl residue 46 in HPr. J. Bacterial. 178: 3557–3563.

    CAS  Google Scholar 

  • Ye JJ, Neal JW, Cui X, Reizer J, Saier MH Jr. (1994a) Regulation of the glucose:H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis. J. Bacteriol. 176: 3484–3492.

    PubMed  CAS  Google Scholar 

  • Ye JJ, Reizer J, Cui X, Saier MH Jr. (1994b) ATP-dependent phosphorylation of serine-46 in the phosphocarrier protein HPr regulates lactose/H+ symport in Lactobacillus brevis. Proc. Natl. Acad. Sci. U.S.A. 91: 3102–3106.

    Google Scholar 

  • Ye JJ, Reizer J, Cui X, Saier MH Jr. (1994c) Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr. J. Biol. Chem. 269: 11837–11844.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Poolman, B. (2002). Transporters and their roles in LAB cell physiology. In: Siezen, R.J., Kok, J., Abee, T., Schasfsma, G. (eds) Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2029-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2029-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6141-6

  • Online ISBN: 978-94-017-2029-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics