Skip to main content

One-Dimensional Stochastic Simulation of Advection-Diffusion-Reaction Couplings in Turbulent Combustion

  • Conference paper
  • 486 Accesses

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 70))

Abstract

The study of turbulent reacting flows invariably involves simplifying assumptions. Here an alternative modeling strategy is adopted that explicitly represents certain nonlinear couplings among the various subprocesses governing turbulent combustion, including unsteadiness and multi-scale interactions. This strategy involves fully resolved simulation at moderately large Reynolds numbers, which is rendered affordable for fully turbulent regimes by formulating a one-dimensional stochastic representation of turbulent flow evolution. The modeling challenges that arise, and the present approach to addressing these challenges, are illustrated by applying the new methodology, denoted one-dimensional turbulence (ODT), to nonpremixed jet flames that exhibit varying degrees of localized extinction and reignition. The role of unsteady strain and molecular transport in ODT in representing extinction and reignition processes in a turbulent environment is noted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow, R. S. (2000). International workshop on measurement and computation of turbulent nonpremixed flames. http://www.ca.sandia.gov/ tdf/Workshop.html.

    Google Scholar 

  • Bilger, R. W. (1993). Conditional moment closure for turbulent reacting flow. Phys. Fluids A, 5: 4–36.

    Google Scholar 

  • Echekki, T., Kerstein, A. R., and Chen, J.-Y. (submitted 2000 ). Computations of turbulent jet diffusion flames using the `one-dimensional turbulence’ model: Methane-air flames. Combust. Flame.

    Google Scholar 

  • Echekki, T., Kerstein, A. R., Chen, J.-Y., and Dreeben, T. D. (2001). Computations of turbulent jet diffusion flames using the `one-dimensional turbulence’ model: Hydrogen-air flames. Combust. Flame, 125: 1083–1105.

    Article  Google Scholar 

  • Hewson, J. C. and Kerstein, A. R. (submitted 2000 ). Stochastic simulation of transport and chemical kinetics in turbulent CO/H2/N2 flames. Combust. Theory Modeling.

    Google Scholar 

  • Hewson, J. C. and Kerstein, A. R. (submitted 2001 ). Local extinction and reignition in nonpremixed turbulent CO/H2/N2 jet flames. Combust. Sci. Tech.

    Google Scholar 

  • Kee, R. J., Warnatz, J., and Miller, J. A. (1983). Chemkin: A general-purpose, problem-independent, transportable, fortran chemical kinetics code package. Technical Report SAND83–8209, Sandia National Laboratory, Livermore, CA.

    Google Scholar 

  • Kerstein, A. R. (1999). One-dimensional turbulence: Model formulation and application to homogenous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech., 392: 277–334.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kerstein, A. R., Ashurst, W. T., Wunsch, S., and Nilsen, V. (2001). One-dimensional turbulence: vector formulation and application to free shear flows. J. Fluid Mech., 447: 85–109.

    Article  ADS  MATH  Google Scholar 

  • Klimenko, A. Y. and Bilger, R. W. (1999). Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci., 25: 595–687.

    Article  Google Scholar 

  • Peters, N. (1984). Laminar diffusion flamelet models in nonpremixed turbulent combustion. Prog. Energy Combust. Sci., 10: 319–339.

    Article  Google Scholar 

  • Peters, N. (2000). Turbulent Combustion. Cambridge University Press.

    Google Scholar 

  • Pitsch, H. and Steiner, H. (2000). Scalar mixing and dissipation rate in large-eddy simulations of non-premixed turbulent combustion. Proc. Combust. Inst., 28: 41–49.

    Article  Google Scholar 

  • Pope, S. B. (1985). PDF methods for turbulent reacting flows. Prog. Energy Combust. Sci., 11: 119.

    Article  MathSciNet  ADS  Google Scholar 

  • Sung, C. J., Law, C. K., and Chen, J.-Y. (1998). An augmented reduced mechanism for methane oxidation with comprehensive global parametric validation. Proc. Combust. Inst., 27: 295–304.

    Google Scholar 

  • Xu, J. and Pope, S. B. (2000). PDF calculations of turbulent non-premixed flames with local extinction. Combust. Flame, 123: 281–307.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hewson, J.C., Kerstein, A.R., Echekki, T. (2002). One-Dimensional Stochastic Simulation of Advection-Diffusion-Reaction Couplings in Turbulent Combustion. In: Pollard, A., Candel, S. (eds) IUTAM Symposium on Turbulent Mixing and Combustion. Fluid Mechanics and Its Applications, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1998-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1998-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6074-7

  • Online ISBN: 978-94-017-1998-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics