Skip to main content

Simulation of a Buoyancy-Driven Jet Diffusion Flame

  • Conference paper
IUTAM Symposium on Turbulent Mixing and Combustion

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 70))

  • 481 Accesses

Abstract

In order to improve our knowledge in turbulent combustion, it is of great interest to thoroughly investigate the interaction between a flame front and a single vortex. The aim of the present study is to simulate a buoyant nonpremixed H2/O2 jet flame. The natural instability of the jet is excited by gravity so that coherent structures appear periodically at a frequency of about 15 Hz. The properties of the flame are highly dependent on diffusion and local mixing induced by these large-scale structures. To compute this unsteady flame, we develop a low-Mach number code derived from a DNS solver that relies on detailed chemistry and transport models. The numerical results are successfully compared to the experimental measurments of OH mole fraction and temperature. In particular, this comparison shows a very good agreement in both shape and level for the temperature field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Bressson, A. (1999). PhD thesis.

    Google Scholar 

  • Durox, D., Yuan, T., and Villermaux, E. (1997). The effect of buoyancy on flickering in diffusion flames. Combust. Sci and Tech., 124: 277–294.

    Article  Google Scholar 

  • Ern, A. and Giovangigli, V. (1995). Fast and accurate multicomponent transport property evaluation. J. Comput. Phys., 120: 105–116.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Giovangigli, V. (1999). Multi-Component Flow Modeling. Birkhäuser Boston.

    Google Scholar 

  • Grisch, F., Attal-Tretout, B., Bouchardy, P., Katta, V., and Roquemore, W. (1996). A vortex-flame interaction study using four-wave mixing techniques. J. of Nonlinear Optical Physical and Materials,5(3):505526.

    Google Scholar 

  • Gutmark, E., Parr, T. P., Parr, D. M., and Schadow, K. C. (1988). Evolution of vortical structures in flames. Proc. Combust. Inst., 22: 523–529.

    Google Scholar 

  • Katta, V. R., Goss, L. P., and Roquemore, W. M. (1994). Numerical investigations of transitional H2/N2 jet diffusion flames. AIAA J., 32 (1): 84–94.

    Article  ADS  Google Scholar 

  • Kee, R. J., Miller, J. A., and Jefferson, T. H. (1980). Chemkin: A general-purpose, problem-independant, transportable, fortran chemical-kinetics code package. Technical Report SAND80–8003, Sandia National Laboratories.

    Google Scholar 

  • Lingens, A., Neemann, K., Meyer, J., and Schreiber, M. (1996). Instability of diffusion flames. Proc. Combust. Inst., 26: 1053–1061.

    Google Scholar 

  • Lynn, W., Goss, L., Chen, T., and Trump, D. (1988). Two component velocity measurements on an axially symmetric H2–N2 jet diffusion flame. In Proceedings of central states section meeting of the combustion inst.

    Google Scholar 

  • Majda, A. and Sethian, J. (1985). The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Tech., 42: 185–205.

    Article  Google Scholar 

  • Thévenin, D., Renard, P., Fiechtner, G., Gord, J., and Rolon, J. (2000). Regimes of nonpremixed flame/vortex interactions. Proc. Combust. Inst., 28

    Google Scholar 

  • Yuan, T., Durox, D., and Villermaux, E. (1994). An analogue study for flame flickering. Experiments in Fluids, 17: 337–349.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

de Charentenay, J., Thévenin, D., Zamuner, B. (2002). Simulation of a Buoyancy-Driven Jet Diffusion Flame. In: Pollard, A., Candel, S. (eds) IUTAM Symposium on Turbulent Mixing and Combustion. Fluid Mechanics and Its Applications, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1998-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1998-8_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6074-7

  • Online ISBN: 978-94-017-1998-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics