Skip to main content

Challenges in Modeling Scalars in Turbulence and LES

Anisotropy, dynamic models, and scale separation

  • Conference paper
IUTAM Symposium on Turbulent Mixing and Combustion

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 70))

  • 486 Accesses

Abstract

This paper discusses three interrelated aspects of modeling scalar transport, mixing and combustion, in the context of large-eddy simulations (LES). In terms of passive scalar modeling, we find from heated wake measurements that whereas the kinetic energy dissipation tensor tends towards isotropy at small scales, in the presence of a mean scalar gradient the SGS scalar variance dissipation remains anisotropic independent of filter scale. The eddy-diffusion model predicts isotropic behavior, whereas the nonlinear model reproduces the correct trends, but overestimates the level of scalar dissipation anisotropy. The results provide some support for mixed models. Applications of dynamic models are also discussed. Initial tests on non-buoyant jet flows show that the constant-coefficient Smagorinsky model generates an entirely laminar jet, whereas the Lagrangian dynamic model yields very good results without the need to tune the model coefficient. In the context of applying the dynamic model to premixed combustion, or other physical processes with large scale-separations, we show that the dynamic determination of unknown scaling exponents is a more promising approach than dynamic evaluation of model coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bardina, J., Ferziger, J. H. and Reynolds, W. C. (1980) “Improved sub-grid scale models for large eddy simulation,” AIAA Pap. 25, 80–1357.

    Google Scholar 

  • Baum, H., McGrattan, K. and Rehm, R. (1996) “Large eddy simulations of smoke movement in three dimensions,” Proceedings of the Thirteenth Meeting of the UJNR Panel on Fire Research and Safety edited by K. Beall, (NIST, Gaithersburg, MD), 249–256.

    Google Scholar 

  • Borue, V. and Orszag, S. (1998) “Local energy flux and subgrid-scalestatistics in three-dimensional turbulence,” J. Fluid Mech. 366 1–31.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Cerutti, S. and Meneveau, C. (2000) “Statistics of filtered velocity in grid and wake turbulence,” Phys. Fluids 12 1143–1165.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Cerutti, S., Meneveau, C. and Knio O.M. (2000) “Spectral and hyper eddy viscosity in high-Reynolds-number turbulence,” J. Fluid Mech 421, 307–338.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Charlette, F., Meneveau, C. and Veynante, D. (2001a) “Flame-wrinkling model and application in thickened-flame LES of premixed turbulent combustion,” Comb. Flame (in preparation for submission).

    Google Scholar 

  • Charlette, F., Meneveau, C. and Veynante, D. (2001b) “A power-law dynamic procedure for LES of turbulent premixed combustion,” Comb. Flame (in preparation for submission).

    Google Scholar 

  • Clark, R. G., Ferziger, J. H. and Reynolds, W. C. (1979) “Evaluation of subgrid models using an accurately simulated turbulent flow,” J. Fluid Mech. 91, 1–16.

    Article  ADS  MATH  Google Scholar 

  • Colin, O, Ducros, F., Veynante, D. and Poinsot T. (2000) “A thickened flame model for large eddy simulations of turbulent premixed combustion,” Phys. Fluids 12, 1843–1863.

    Article  ADS  Google Scholar 

  • Germano, M., Piomelli, U. Moin, P. and Cabot, W. (1991) “A dynamic subgrid-scale eddy viscosity model,” Phys. Fluids A 3, 1760–1765.

    Article  ADS  MATH  Google Scholar 

  • Hussein, H. J., Capp, S. and George, W. K. (1994) “Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet,” J. Fluid Mech. 258, 31–75.

    Article  ADS  Google Scholar 

  • Im, H. G., Lund, T. S. and Ferziger J. H. (1997) “Large eddy simulation of turbulent front propagation with dynamic subgrid models,” Phys. Fluids 9, 3826–3833.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kang, H. S. and Meneveau, C. (2001) “Passive scalar anisotropy in a heated turbulent wake: new observations and implications for large-eddy simulations,” J. Fluid Mech. 442, 161–170.

    Article  ADS  MATH  Google Scholar 

  • Kiya, M. and Matsumura, M. (1988) “Incoherent turbulent structure in the near wake of a normal plate,” J. Fluid Mech. 190 343–356.

    Article  ADS  Google Scholar 

  • Leonard, A. (1974) “Energy cascade in large-eddy simulations of turbulent fluid flows,” Adv. Geophys 18 237–248.

    Article  ADS  Google Scholar 

  • Leonard, A. (1997) “Largeeddy simulation of chaotic convection and beyond,” Am. Inst. Aeronaut. Astronaut. Pap. 97–0204: 1–8.

    Google Scholar 

  • Liu, S., Katz, J. and Meneveau, C. (1999) “Evolution and modelling of subgrid scales during rapid straining of turbulence,” J. Fluid Mech. 387, 281–320.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Liu, S., Meneveau, C. and Katz, J. (1994) “On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet,” J. Fluid Mech. 275, 83–119.

    Article  ADS  Google Scholar 

  • Matsumura, M. and Antonia, R. A. (1993) “Momentum and heat transport in the turbulent intermediate wake of a circular cylinder,” J. Fluid Mech. 250, 651–668.

    Article  ADS  Google Scholar 

  • McGrattan, K., Baum, H. and Rehm, R. (1998) “Large Eddy Simulations of Smoke Movement,” Fire Science Journal 30, 161–178.

    Google Scholar 

  • Mell, W., Johnson, A., McGrattan, K. and Baum, H. (1995) “Large eddy simulations of buoyant plumes,” Proceedings, Eastern States Section of Combustion Institute, Fall Technical Meeting HTD 304, 187–190.

    Google Scholar 

  • Mell, W., McGrattan, K. and Baum, H. (1995) “Large eddy simulations of fire driven flows,” National Heat Transfer Conference HTD 304, 73–77.

    Google Scholar 

  • Meneveau, C. and Poinsot, T. (1991) “Stretching and quenching of flamelets in premixed turbulent combustion,” Comb. Flame 86, 311–332.

    Article  Google Scholar 

  • Meneveau, C. and Katz, J. (2000) “Scale-invariance and turbulence models for large-eddy simulation,“ Annu. Rev. Fluid Mech. 32 1–32.

    Google Scholar 

  • Meneveau, C., Lund, T. and Cabot, W. (1996) “A Lagrangian dynamic subgrid-scale model of turbulence,” J. Fluid Mech. 319 353–386.

    Article  ADS  MATH  Google Scholar 

  • O’Neil, J. and Meneveau, C. (1997) “Subgrid-scale stresses and their modelling in a turbulent plane wake,” J. Fluid Mech. 349 253–293.

    Article  MathSciNet  ADS  Google Scholar 

  • Peters (2000) ”Turbulent combustion, Cambridge University Press, Cambridge

    Google Scholar 

  • Piomelli, U. and Zang, T. (1991) “Large-eddy-simulation of transitional channel flow,” Comp. Phys. Comm. 65–224.

    Google Scholar 

  • Pope, S. B. (2000) “Turbulent flow,” Cambridge University Press, Cambridge.

    Google Scholar 

  • Smagorinsky, J. (1963) “General circulation experiments with the primitive equations. i. The basic experiment,” Mon. Weather. Rev. 91–99.

    Google Scholar 

  • Stoessel, A., (1995) “An efficient tool for the study of 3D turbulent combustion phenomena on MPP computers,” Proc. of the HPCN 95 Conference, Milan ( Italy ), Springer-Verlag, 306–311.

    Google Scholar 

  • Warhaft, Z. (2000) “Passive scalars in turbulent flows,” Annu. Rev. Fluid Mech. 32, 203–240.

    Article  MathSciNet  ADS  Google Scholar 

  • Wygnanski, I. and Fiedler, H. (1969) “Some measurements in the self-preserving jet,” J. Fluid Mech. 38, 577–612.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Meneveau, C., Kang, H.S., Charlette, F., Averill, J., Knio, O., Veynante, D. (2002). Challenges in Modeling Scalars in Turbulence and LES. In: Pollard, A., Candel, S. (eds) IUTAM Symposium on Turbulent Mixing and Combustion. Fluid Mechanics and Its Applications, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1998-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1998-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6074-7

  • Online ISBN: 978-94-017-1998-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics