Skip to main content

Hypertrophic phytoplankton and the Intermediate Disturbance Hypothesis

  • Conference paper
Intermediate Disturbance Hypothesis in Phytoplankton Ecology

Part of the book series: Developments in Hydrobiology ((DIHY,volume 81))

Abstract

The provisions of Connell’s Intermediate Disturbance Hypothesis (IDH) were investigated in relation to the behaviour of freshwater phytoplankton in a hypertrophic lagoon, paying special attention to the link between species-diversity and environmental disturbances. Phytoplankton diversity yielded different indices depending on the basic unit of calculations (cells, particles, phytoplankton units, biomass). Although their ranges were approximately equal, they did not covary so could not be considered mutually substitutable. For the purpose of IDH testing, biomass diversity was chosen.

Equilibrium states were considered to obtain in those periods with a very high fraction of total phytoplankton biomass, shared by no more than three phytoplankton species. Disturbances were considered as counterparts of equilibrium states. Disturbance factors were mostly abiotic, environmental features of the lake operating on the phytoplankton community at different time scales (co-occurring and with 1- and 2-weeks’ lags). These scales may relate to the time required to establish phytoplankton community structure.

IDH could be suspected not to hold for the phytoplankton of this hypertrophic lake, which experienced seven near-equilibrium phases and six disturbance periods throughout the study. As a rule, equilibrium states lasted longer than disturbance periods. The expected relationships between both disturbance intensity or frequency were not shown. Furthermore, no relationship was demonstrated between diversity (and hence IDH) and the phytoplankton community change rate. Wind stress probably played a minor role in triggering disturbance events. Disturbances were shown partly to promote small-sized phytoplankton communities.

Finally, a plea for studying hypertrophic phytoplankton in greater detail is stressed if its responses to disturbances are to be fully understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez Cobelas, M., 1991. Optical limnology of a hypertrophic, gravel-pit lake. Int. Revue ges. Hydrobiol. 76: 213223.

    Google Scholar 

  • Alvarez Cobelas, M., A. Rubio and F. J. Acosta, 1986. Difusiem vertical y estabilidad térmica en una laguna hipereutrbfica. Limnetica 2: 1–9.

    Google Scholar 

  • Alvarez Cobelas, M., A. Rubio, M. Aradzo, P. Alarcón and V. Alario, 1987. Morfometria y composicibn quimica de una laguna de gravera. Limnetica 3: 91–95.

    Google Scholar 

  • Alvarez Cobelas, M., A. Rubio and J. L. Velasco, 1990. Chemical limnology of a hypertrophic, gravel-pit lake. Ann. Limnol. 26: 97–108.

    Google Scholar 

  • APHA, 1985. Standard methods for the examination of waters and wastewaters. 16th ed. Washington DC. 1268 pp.

    Google Scholar 

  • Bartha, Zs. and L. Hajdu, 1979. Phytoplankton community structure studies on Lake Velence, Hungary.-I. Diversity. Acta. bot. Acad. Sci. Hung. 25: 187–222.

    Google Scholar 

  • Connell, J. H., 1978. Diversity in tropical forests and coral reefs. Science 199: 1302–1310.

    Article  PubMed  CAS  Google Scholar 

  • Chatfield, C., 1984. The analysis of time series. An introduction. Chapman and Hall, London. 286 pp.

    Google Scholar 

  • Dussart, B. H., 1965. Les différents catégories de plancton. Hydrobiologia 26: 72–74.

    Article  Google Scholar 

  • Elber, F. and F. Schanz, 1989. The causes of change in the diversity and stability of phytoplankton communities in small lakes. Freshwat. Biol. 21: 237–251.

    Google Scholar 

  • Elber, F. and F. Schanz, 1990. The influence of a flood event on phytoplankton succession. Schweiz. Z. Hydrol. 52: 330–344.

    Google Scholar 

  • Fott, J., V. Korinek, M. Prazâkovâ, B. Vondrus and K. Forejt, 1974. Seasonal development of phytoplankton in fish ponds. Int. Revue ges. Hydrobiol. 59: 629–641.

    Google Scholar 

  • Gaedeke, A and V. Sommer, 1986. The influence of the frequency of periodic disturbances on the maintenance of phytoplankton diversity. Oecologia 71: 25–28.

    Article  Google Scholar 

  • Grover, J. P., 1989. Effects of Si:P supply ratio, supply variability, and selective grazing in the plankton: an experiment with a natural algal and protistan assemblage. Limnol. Oceanogr. 34: 349–367.

    Google Scholar 

  • Hardin, G., 1960. The competitive exclusion principle. Science 131: 1292–1297.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, G. E., 1960. The paradox of the plankton. Am. Nat. 95: 137–145.

    Google Scholar 

  • Jassby, A. D. and C. R. Goldman, 1974. A quantitative measure of succession rate and its application to the phytoplankton of lakes. Am. Nat. 108: 688–693.

    Google Scholar 

  • Kalif, J. and R. Knoechel, 1978. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes. Ann. Rev. Ecol. Syst. 9: 475–495.

    Google Scholar 

  • Kirk, J. T., 1983 Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge. 401 pp.

    Google Scholar 

  • Legendre, L. and P. Legendre, 1979. Ecologie numérique, I: le traitement multiple des données écologiques. Masson, Paris. 197 pp.

    Google Scholar 

  • Lewis jr., W. M., 1978. Analysis of succession in a tropical phytoplankton community and a new measure of succession rate. Am. Nat. 112: 401–414.

    Google Scholar 

  • Lubchenco, J., 1978. Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. Am. Nat. 112: 23–39.

    Google Scholar 

  • Mayzaud, P., S. Taguchi and P. Laval, 1984. Seasonal patterns of seston characteristics in Bedford Basin, Nova Scotia, relative to zooplankton feeding• a multivariate approach. Limnol. Oceanogr. 29: 745–762.

    Google Scholar 

  • Mortimer, C. H., 1974. Lake hydrodynamics. Mitt. int. Ver. Limnol. 20: 124–197.

    Google Scholar 

  • Moss, B., 1973. Diversity in freshwater phytoplankton. Am. Midl. Nat. 90: 341–355.

    Google Scholar 

  • Padisâk, J., L. G.-Toth and M. Rajczy, 1988. The role of storms in the summer succession of the phytoplankton community in a shallow lake ( Lake Balaton, Hungary). J. Plankton Res. 10: 249–265.

    Google Scholar 

  • Peters, R. H., 1983. The ecological implications of body size. Cambridge University Press, Cambridge. 329 pp.

    Chapter  Google Scholar 

  • Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarct. Ecol. 3: 141–159.

    Google Scholar 

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplank- ton. Cambridge University Press, Cambridge, 384 pp.

    Google Scholar 

  • Richerson, P. J. and H. J. Carney, 1988. Patterns of temporal variation in Lake Titicaca, a high altitude tropical lake. II. Succession rate and diversity of the phytoplankton. Verh. int. Ver. Limnol. 23: 734–738.

    Google Scholar 

  • Rojo, C., 1990. Estructura de la comunidad fitoplanctbnica de la laguna hipertréfica `El Porcal’ (Madrid). Ph. D. thesis. Univ. Valencia, Valencia (Spain). 389 pp.

    Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercalibrations. Schweiz. Z. Hydrol. 43: 34–62.

    Google Scholar 

  • Sager, P. E. and A. D. Hasler, 1969. Species diversity in lacustrine phytoplankton. I. The components of the index of diversity from Shannon’s formula. Am. Nat. 103: 5159.

    Google Scholar 

  • Shannon, C. E. and W. Weaver, 1963. The mathematical theory of communication. Univ. Illinois Press, Urbana (USA). 117 pp.

    Google Scholar 

  • Sommer, U., 1989. The role of competition for resources in phytoplankton succession. In U. Sommer (ed.), Plankton ecology, succession in plankton communities. Springer Verlag, Berlin. pp. 57–106.

    Chapter  Google Scholar 

  • Sommer, U., J. Padisâk, C. S. Reynolds and P. Juhâsz-Nagy, 1993. Hutchinson’s heritage: the diversity-disturbance relationship in phytoplankton. In J. Padisâk, C. S. Reynolds and U. Sommer (eds), Intermediate Disturbance Hypothesis in Phytoplankton Ecology. Developments in Hydrobiology 81. Kluwer Academic Publishers, Dordrecht: 1–7. Reprinted from Hydrobiologia 249.

    Google Scholar 

  • Sousa, W. P., 1979. Disturbance in marine intertidal boulder fields: the nonequilibrium maintenance of species diversity. Ecology 60: 1225–1239.

    Article  Google Scholar 

  • Tilman, D., 1982. Resource competition and community structure. Princeton University Press, Princeton. 296 pp.

    Google Scholar 

  • Uhlmann, D., 1980. Stability and multiple steady states of hypereutrophic ecosystems. In J. Barica and L. Mur (eds), Hypertrophie Ecosystems. Dr W. Junk Publishers, The Hague: 235–247.

    Chapter  Google Scholar 

  • Weisse, T., 1988. Dynamics of autotrophic picoplankton in Lake Constance. J. Plankton Res. 10: 1179–1188.

    Article  Google Scholar 

  • Williams, N. J. and C. R. Goldman, 1975. Succession rates in lake phytoplankton communities. Verh. int. Ver. Limnol. 19: 808–811.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Padisák C. S. Reynolds U. Sommer

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Rojo, C., Cobelas, M.A. (1993). Hypertrophic phytoplankton and the Intermediate Disturbance Hypothesis. In: Padisák, J., Reynolds, C.S., Sommer, U. (eds) Intermediate Disturbance Hypothesis in Phytoplankton Ecology. Developments in Hydrobiology, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1919-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1919-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4233-0

  • Online ISBN: 978-94-017-1919-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics