Skip to main content

Defenses against oxidative stress in the Antarctic scallop Adamussium colbecki and effects of acute exposure to metals

  • Conference paper
Interactions and Adaptation Strategies of Marine Organisms

Part of the book series: Developments in Hydrobiology ((DIHY,volume 121))

Abstract

Since a general pathway of toxicity induced by pollutants is the enhancement of reactive oxygen species, biochemical responses associated with variations in the antioxidant cellular system have been often proposed as biomarkers of pollutant-mediated toxicity associated with oxidative stress. Antarctic organisms live in an extreme environment characterized by low water temperature, high level of dissolved oxygen, presence of ice and strong seasonal changes in light intensity and availability of food, conditions which could influence both the formation of reactive oxygen species and the mechanisms for their removal. In this respect and considering the utility of this as a key species for monitoring marine Antarctic environment it was of interest to investigate the antioxidant defense system of the scallop Adamussium colbecki.

The parameters examined in the digestive gland of the scallop were the concentration of glutathione and the activity of several glutathione dependent and antioxidant enzymes (glyoxalase I and II, glutathione S-transferases, glutathione peroxidases, glutathione reductase, catalase, superoxide dismutase). Very high levels of catalase suggest a possible adaptation to Antarctic extreme conditions, while the high activities of glutathione S-transferases are more probably related to the feeding behavior of Pectinids. Enzymes from Adamussium colbecki generally appeared to be active at low temperatures but, with a few exceptions, their activities increased with rising temperature. Exposure of A. colbecki to sublethal concentrations of Cu or Hg resulted in a significant reduction in the levels of total glutathione and in the activity of catalase and glutathione S-transferases. Antioxidant responses of A. colbecki could represent a useful tool in assessing the biological impact of environmental pollutants in the Antarctic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerboom, T. P. M. and H. Sies, 1981. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Meth. Enzym. 71: 373–382.

    Google Scholar 

  • Barja de Quiroga, G., M. Lüpez-Torres and R. Pérez-Campo 1989. Catalase is needed to avoid tissue peroxidation in Rana pereri in normoxia. Comp. Biochem. Physiol. 94C: 391–398.

    Google Scholar 

  • Bayne, B. L., K. R. Clarke and J. S. Gray, 1988. Background and rationale to a practical workshop on biological effects of pollutants. Mar. Ecol. Prog. Ser. 46: 1–5.

    Google Scholar 

  • Berkman, P. A. and M. Nigro, 1992. Trace metal concentrations in scallop around Antarctica: extending the Mussel Watch Program to the Southern Ocean. Mar. Pollut. Bull. 24: 322–323.

    Google Scholar 

  • Chance, B., H. Sies and A. Boveris, 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59: 527–605.

    Google Scholar 

  • Fitzpatrick, P. J. and D. Sheehan, 1993. Separation of multiple forms of glutathione 5-transferases from the blue mussel, Mytilus edulis. Xenobiotica 23: 851–861.

    Article  PubMed  CAS  Google Scholar 

  • Greenwald, R. A., 1985 Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, Florida, 276 pp.

    Google Scholar 

  • Habig, W. H and W. B. Jakoby, 1981. Assays for differentiation of glutathione S-transferases. Meth. Enzym. 77: 398–405.

    Google Scholar 

  • Lawrence, R. A. and R. F. Burk, 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 71: 952–958.

    Google Scholar 

  • Lee, R. F., 1988. Glutathione S-transferases in marine invertebrates from Langesundfjord. Mar. Ecol. Prog. Ser. 46: 33–36.

    Google Scholar 

  • Livingstone, D. R., 1991. Organic xenobiotic metabolism in marine invertebrates. In Gilles, R. (ed.), Advances in Comparative and Environmental Physiology. Springer-Verlag, Heidelberg, 7: 45185.

    Google Scholar 

  • Livingstone, D. R., 1993. Biotechnology and pollution monitoring. Use of molecular biomarkers in the aquatic environment. J. Chem. Technol. Biotechnol. 57: 195–211.

    Google Scholar 

  • Lowry, O. H., N. J. Rosenbrough, A. L. Farr and R. J. Randall, 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 266–275.

    Google Scholar 

  • MacDonald, J. A., J. C. Montgomery and R. M. G. Wells, 1987. Comparative physiology of Antarctic fish. Adv. Mar. Biol. 24: 321–388.

    Google Scholar 

  • McCord, J. M. and I. Fridovich, 1969. Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049–6055.

    Google Scholar 

  • Meister, A., 1989. On the biochemistry of glutathione. In Taniguchi, N., T. Higashi, S. Sakamoto and A. Meister (eds), Glutathione Centennial, Molecular Perspectives and Clinical Implications. Academic Press, San Diego, CA: 3–22.

    Chapter  Google Scholar 

  • Phillips, D. J. H., 1980. Quantitative aquatic biological indicators: their use to monitor trace metal and organochlorine pollution. Appl. Sci. Publ. Ltd, London, 181 pp.

    Google Scholar 

  • Ramos-Martinez, J. I., T. R. Bartolomé and R. V. Pemas, 1983. Purification and properties of glutathione reductase from hepatopancreas of Mytilus edulis L. Comp. Biochem. Physiol. 75B: 689692.

    Google Scholar 

  • Regoli, F. and G. Principato, 1995. Glutathione, glutathionedependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers. Aquat. Toxicol. 31: 143–164.

    Google Scholar 

  • Regoli, F., G. B. Principato, E. Bertoli, M. Nigro and E. Orlando, 1997. Biochemical characterization of the antioxidant system in the scallop Adamussium colbecki, a sentinel organism for monitoring the Antarctic environment. Polar Biol. 17: 251–258.

    Article  Google Scholar 

  • Suteau, P., M. Daubeze, M. L. Migaud and J. F. Narbonne, 1988. PAH-metabolizing enzymes in whole mussels as biochemical tests for chemical pollution monitoring. Mar. Ecol. Prog. Ser. 46: 45–49.

    Google Scholar 

  • Viarengo, A., L. Canesi, M. Pertica, G. Poli, M. N. Moore and M. Orunesu, 1990. Heavy metal effects on lipid peroxidation in the tissues of Mytilus galloprovincialis Lam. Comp. Biochem. Physiol. 97C: 37–42.

    Google Scholar 

  • Winston, G. W., 1991. Oxidants and antioxidants in aquatic animals. Comp. Biochem. Physiol. 100C: 173–176.

    Google Scholar 

  • Winston, G. W. and R. T. Di Giulio, 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 19: 137–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Regoli, F., Nigro, M., Bertoli, E., Principato, G., Orlando, E. (1997). Defenses against oxidative stress in the Antarctic scallop Adamussium colbecki and effects of acute exposure to metals. In: Naumov, A.D., Hummel, H., Sukhotin, A.A., Ryland, J.S. (eds) Interactions and Adaptation Strategies of Marine Organisms. Developments in Hydrobiology, vol 121. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1907-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1907-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4988-9

  • Online ISBN: 978-94-017-1907-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics