Skip to main content

Model Refinement and Damage Location for Intelligent Structures

  • Chapter
Intelligent Structural Systems

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 13))

Abstract

Intelligent Structural Systems (ISS) are structures which integrate control and computational subsystems into a single structural entity. Ideally, an ISS would adapt its dynamic characteristics to meet performance objectives at any instant. Therefore, ISS have a tremendous potential for a wide range of structural applications in which efficient integrated systems are necessary, from large space structures to low noise emission submarines. To realize this potential, however, advances are needed in several technical areas, including development of embedded sensors/actuators, algorithms for control/adaptation, techniques for health monitoring and integrated approaches for system design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Model Determination for Large Space Systems, Proceedings of the USAF/NASA Workshop, California Institute of Technology, Pasadena, California, 1988.

    Google Scholar 

  • System Identification and Health Monitoring of Precision Space Structures, Proceedings of the 2nd USAF/NASA Workshop, California Institute of Technology, Pasadena, California, 1990.

    Google Scholar 

  • Adelman, H. M. and R. T. Haftka (1986), “Sensitivity Analysis of Discrete Structural Systems,” AIAA Journal, Vol. 24, No. 5, pp. 823–832.

    ADS  Google Scholar 

  • Agbabian, M. S., et. al. (1987), ‘A System Identification Approach to the Detection of Changes in Structural Parameters,” Proceedings of the Workshop on Structural Safety Evaluation Based on System Identification Approaches, Lambrecht/Pfatz, Germany, pp. 341–356.

    Google Scholar 

  • Allen, J. and D. Martinez, (1989), “Automating the Identification of Structural Model Parameters”, Proceedings of the 30th AIAA SDM Conference, Mobile, Alabama, pp. 728–736.

    Google Scholar 

  • Andry, A.N., E.Y. Shapiro, and J.C. Chung (1983), “Eigenstructure Assignment for Linear Systems,” IEEE Transactions on Aerospace and Electronic Systems,, Vol. AES-19, No. 5, pp. 711–729.

    Google Scholar 

  • Avitabile, P., J. O’Callahan, and F. Pechinsky, (1990), “Understanding Structural Dynamic Modification Truncation”, Proceedings of the 8th International Modal Analysis Conference, Orlando, Florida, pp. 43–54.

    Google Scholar 

  • Baruch, M. and Y. Zemel, (1989), “Mass Conservation in the Identification of Space Structures”, Proceedings of the 30th AIAA SDM Conference, Mobile, Alabama, pp. 710–712.

    Google Scholar 

  • Baruch, M. (1978), “Optimization Procedure to Correct Stiffness and Flexibility Matrices Using Vibration Tests”, AMA Journal, Vol. 16, pp. 1208–1210.

    ADS  MATH  Google Scholar 

  • Baruch, M. (1984), “Methods of Reference Basis for Identification of Linear Dynamic Structures,” AIAA Journal, Vol. 22, No. 4, pp. 561–564.

    ADS  Google Scholar 

  • Baruch, M. and I. Y. Bar Itzhack (1978), “Optimum Weighted Orthogonalization of Measured Modes,” AMA Journal, Vol. 16, No. 4, pp. 346–351.

    ADS  Google Scholar 

  • Berman, A. and E. J. Nagy (1983), “Improvements of a Large Analytical Model Using Test Data,” AIAA Journal, Vol. 21, No. 8, pp. 1168–1173.

    Article  ADS  Google Scholar 

  • Berman, A. and W G. Flannelly (1971), “Theory of Incomplete Models of Dynamic Structures,” AIAA Journal, Vol. 9, No. 8, pp. 1481–1487.

    Article  ADS  Google Scholar 

  • Berman, A. (1984), “System Identification of Structural Dynamic Models -Theoretical and Practical Bounds,” Proceedings of the AIAA/ASME/ASCE/AHS 25th Structures, Structural Dynamics and Materials Conference, Palm Springs, California, pp. 123–129.

    Google Scholar 

  • Blair, M.A. and N. Vadlamudi, (1988), “Constrained Structural Dynamic Model Verification Using Free Vehicle Suspension Testing Methods”, Proceedings for the 29th AIAA SDM Conference, Williamsburg, Virginia, pp. 1187–1193.

    Google Scholar 

  • Blelloch, P. A. and K. S. Carney (1990), “Selection of Component Modes,” Proceedings of the AIAA SDM Dynamics Specialist Conference, Long Beach, California, pp. 105–112.

    Google Scholar 

  • Brillhart, R., et. al. (1989), “Transfer Orbit Stage Modal Survey: Part 2, Model Correlation,” Proceedings of the 7th International Modal Analysis Conference (IMAC), Las Vegas, Nevada, pp. 1157–1161.

    Google Scholar 

  • Brock, J. E. (1968), “Optimal Matrices Describing Linear Systems,” AIAA Journal, Vol. 6, No. 7, pp. 1292–1296.

    Article  ADS  MATH  Google Scholar 

  • Bronowicki, A.J., Lukich, M.S. and Kuritz, S.P. (1986), “Application of Physical Parameter Identification to Finite Element Models”, First NASA/DOD CSI Technology Conference, Norfolk, Virginia.

    Google Scholar 

  • Caesar, B. and J. Peter (1987), “Direct Update of Dynamic Mathematical Models from Modal Test Data,” AIAA Journal, Vol. 25, No. 11, November 1987, pp. 1494–1499.

    Article  ADS  Google Scholar 

  • Chen, J. C. and D. L. Hunt (1984), “Application of Multiple Input Random and Polyreference Analysis Techniques to the Galileo Spacecraft Modal ‘lest,” Proceedings of the AIAA/ASME/ASCE 25th Structures, Structural Dynamics and Materials Conference, Palm Springs, California, pp. 554–560.

    Google Scholar 

  • Chen, T.Y and B.P. Wang, (1988), “Finite Element Model Refinement Using Modal Analysis Data”, Proceedings for the 29th AIAA SDM Conference, Williamsburg, Virginia, pp. 1219–1229.

    Google Scholar 

  • Chen, J. C. and J. A. Garba, (1980) ‘Analytical Model Improvement Using Modal Test Results,” AIAA Journal, Vol. 18, No. 6, pp. 684–690.

    Article  ADS  Google Scholar 

  • Chou, C., J. O’Callahan, and C. Wu, (1989), “Localization of Test/Analysis Structural Model Errors”, Proceedings of the 30th AIAA SDM Conference, Mobile, Alabama, pp. 748–752.

    Google Scholar 

  • Collins, J. D., G. C. Hart, T. K. Hasselman and B. Kennedy (1974), “Statistical Identification of Structures,” AIAA Journal, Vol. 12, No. 2, pp. 185–190.

    Article  ADS  MATH  Google Scholar 

  • Conti, P. (1989), “A Higher Order Generalization of the Guyan Reduction Method,” Proceedings of the 7th International Modal Analysis Conference, Las Vegas, Nevada, pp. 529–532.

    Google Scholar 

  • Coppolino, R. N. and S. Rubin (1980), “Detectability of Structural Failures in Offshore Platforms by Ambient Vibration Monitoring,” Proceedings of the 12th Offshore Technology Conference, Houston, Texas, pp. 101–110.

    Google Scholar 

  • Creamer, N. G. and S. L. Hendricks (1987), “Structural Parameter Identification Using Modal Response Data,” Proceedings of the 6th VPI&SU/AIAA Symposium on Dynamics and Controls for Large Structures, Blacksburg, Virginia, pp. 27–38.

    Google Scholar 

  • Creamer, N.G., and J.L. Junkins, (1987), “An Identification Method for Flexible Structures,” Proceedings of the 28th AIAA SDM Conference, Monterey, California, pp. 163–171.

    Google Scholar 

  • Davison, E.J. (1966), ‘A Method for Simplifying Linear Dynamic Systems,” IEEE Transactions on Automatic Control, Vol. AC-11, pp. 93–101.

    Google Scholar 

  • Denman, E., et. al. (1986), Identification of Large Structures on Orbit, AFRPL TR-86–054.

    Google Scholar 

  • Dobson, B.J. (1984), “Modification of Finite Element Models Using Experimental Modal Analysis”, 2nd International Modal Analysis Conference, Orlando, Florida, pp. 593–601.

    Google Scholar 

  • Douglas, B.M. and W.H. Reid (1982), “Dynamic Tests and System Identification of Bridges,” Journal of the Structural Division, ASCE, Vol. 108, No. 10, pp. 2295–2312.

    Google Scholar 

  • Ewins, D.J. (1986), Modal Testing: Theory and Practice, Research Studies Press LTD, England.

    Google Scholar 

  • Flanigan, C.C. (1991), “Correlation of Finite Element Models Using Mode Shape Design Sensitivity,” Proceedings of the 9th International Modal Analysis Conference (IMAC).

    Google Scholar 

  • Fuh, J., S. Chen, and A. Berman, (1984), “System Identification of Analytical Models of Damped Structures,” Proceedings of the AIAA 25th SDM Conference, Palm Springs, California, pp. 112–122.

    Google Scholar 

  • Guyan, R.J. (1965), “Reduction of Stiffness and Mass Matrices,” AIAA Journal, Vol. 3, No. 2, p. 380.

    Article  Google Scholar 

  • Gysin, H.P. (1990), “Comparison of Expansion Methods for FE Modeling Error Localization”, Proceedings of the 8th International Modal Analysis Conference, Orlando, Florida, pp. 195–204.

    Google Scholar 

  • Gysin, H.P. (1986), “Critical Application of the Error Matrix Method for Localisation of Finite Element Modeling Inaccuracies”, Proceedings of the 4th International Modal Analysis Conference, Los Angeles, California, pp. 1339–13M.

    Google Scholar 

  • Hajela, P. and F.J. Soeiro (1990), “Recent Developments in Damage Detection Based on System Identification Methods,” Structural Optimization, Vol. 2, pp. 1–10.

    Article  Google Scholar 

  • Hajela, P. and F.J. Soeiro, (1989), “Structural Damage Detection Based on Static and Modal Analysis”, Proceedings of the 30th AIAA SDM Conference, Mobile, Alabama, pp. 1172–1181.

    Google Scholar 

  • Hanagud, S., M. Meyyappa, Y.P. Cheng, and J.I. Craig (1984), “Identification of Structural Dynamic Systems with Nonproportional Damping”, Proceedings of the 25th AIAA SDM Conference, Palm Springs, California, pp. 283–291.

    Google Scholar 

  • Hashemi-Kia, M., M. A. Cutchins, and M. L. Tinker (1988), “Investigation of Dynamic Characteristics of an Elastic Wing Model by Using Corrections of Mass and Stiffness Matrices,” Journal of Sound and Vibration, Vol. 121, No. 1, pp. 67–76.

    Article  ADS  Google Scholar 

  • Heylen, W (1982), “Optimization of Model Matrices by Means of Experimentally Obtained Dynamic Data”, Proceedings of the 1st International Modal Analysis Conference, Orlando, Florida, pp. 32–38.

    Google Scholar 

  • Horta, L.G., and J.-N. Juang, “Identifying Approximated Linear Models for Simple Nonlinear Systems,” Proceedings of the 26th SDM Conference, Orlando, Florida, pp. 282–289.

    Google Scholar 

  • Ibrahim, S.R. and A.A. Saafan, (1987), “Correlation of Analysis and ‘lest in Modeling of Structures Assessment and Review”, Proceedings of the 5th International Modal Analysis Conference, London, England, pp. 1651–1660.

    Google Scholar 

  • Inman, D.J. and C. Minas (1990), “Matching Analytical Models with Experimental Modal Date in Mechanical Systems”, Control and Dynamic Systems, Vol. 37, pp. 327–363.

    Article  Google Scholar 

  • Juang, J.-N. and R. S. Pappa (1985), “An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction,” Journal of Guidance, Control and Dynamics, Vol. 8, No. 5, pp. 620–627.

    Article  ADS  MATH  Google Scholar 

  • Juang, J.-N. and R. S. Pappa (1987), “A Comparative Overview of Modal Testing and System Identification for Control of Structures,” Proceedings of the SEM Spring Conference on Experimental Mechanics, Houston, Texas, pp. 250–259.

    Google Scholar 

  • Kabe, A. M. (1985), “Stiffness Matrix Adjustment Using Mode Data,” AMA Journal, Vol. 23, No. 9, pp. 1431–1436.

    ADS  Google Scholar 

  • Kammer, D. C. (1988), “Optimum Approximation for Residual Stiffness in Linear System Identification,” AIAA Journal, Vol. 26, No. 1, pp. 104–112.

    Article  ADS  MATH  Google Scholar 

  • Kammer, D. C. (1987), “Test-Analysis-Model Development Using an Exact Modal Reduction,” Journal of Modal Analysis, Vol. 2, No. 4, pp. 174–179.

    Google Scholar 

  • Kammer, D.C., “Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures,” Journal of Guidance, Control and Dynamics, Vol. 14, No. 2, pp. 251–259.

    Google Scholar 

  • Kircher, C. A. (1976), ‘Ambient and Forced Vibration Analysis of Full Scale Structures,” Ph.D. Dissertation, Stanford University, Stanford, California.

    Google Scholar 

  • Kuo, C. P. and B. K. Wada (1987), “Nonlinear Sensitivity Coefficients and Corrections in System Identification,”AIAA Journal, Vol. 25, No. 11, pp. 1463–1468.

    Google Scholar 

  • Lieven, N.A.J. and D.J. Ewins, (1990), “Expansion of Modal Data for Correlation”, Proceedings of the 8th International Modal Analysis Conference, Orlando, Florida, pp. 605–609.

    Google Scholar 

  • Lim, T. W. (1990), “Submatrix Approach to Stiffness Matrix Correction Using Modal Test Data,” AIAA Journal, Vol. 28, No. 6, pp. 1123–1130.

    Article  ADS  Google Scholar 

  • Lin, C.S. (1990), “Location of Modeling Errors Using Modal Test Data”, AMA Journal, Vol. 28, No. 9, pp. 1650–1654.

    ADS  Google Scholar 

  • Link, M. (1986), “Identification of Physical System Matrices Using Incomplete Vibration Data,” Proceedings of the 4th International Modal Analysis Conference (IMAC), Los Angeles, California, pp. 386–393.

    Google Scholar 

  • Martensson, K. (1971), “On the Matrix Riccati Equation,” Information Sciences, Vol. 3, pp. 17–49.

    Article  MathSciNet  Google Scholar 

  • Martinez, D.R., J. Red-Horse and J. Allen (1991), “System Identification Methods for Dynamic Structural Models of Electronic Packages,” Proceedings of the 32nd AIAA SDM Conference, Baltimore, Maryland, pp. 2336–2345.

    Google Scholar 

  • Martinez, D.R., T.G. Carne, D.L. Gregory, and A.K. Miller, (1984), “Combined Experimental/Analytical Modeling Using Component Mode Synthesis”, Proceedings of the 25th AIAA SDM Conference, Palm Springs, California, pp. 140–152.

    Google Scholar 

  • Matzen, V. C. (1987), “Time Domain Identification of Reduced Parameter Models,” Proceedings of the SEM Spring Conference on Experimental Mechanics, Houston, Texas, pp. 401–408.

    Google Scholar 

  • McGrew, J. (1969), “Orthogonalization of Measured Modes and Calculation of Influence Coefficients”, AMA Journal, Vol. 7, pp. 774–776.

    ADS  Google Scholar 

  • Minas, C. and D. J. Inman (1990), “Matching Finite Element Models to Modal Data,” Journal of Vibration and Acoustics, Trans. ASME, Vol. 112, pp. 84–92.

    Google Scholar 

  • Mook, D. J. (1989), “Estimation and Identification of Nonlinear Dynamic Systems,” AIAA Journal, Vol. 27, No. 7, pp. 968–974.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Natke, H. G. and J. T. P. Yao, eds. (1987), Structural Safety Evaluation Based on System Identification Approaches, Proceedings of the Workshop at Lambrecht/Pfalz, Germany.

    Google Scholar 

  • Niedbal, N. (1984). “Analytical Determination of Real Normal Modes from Measured Complex Responses”, Proceedings of the 25th AIAA SDM Conference, Palm Springs, California, pp. 292–295.

    Google Scholar 

  • O’Callahan, J.C. (1989a), “A Procedure for an Improved Reduced System (IRS) Model,” Proceedings of the 7th International Modal Analysis Conference (IMAC), Las Vegas, Nevada, pp. 17–21.

    Google Scholar 

  • O’Callahan, J. C., P. Avitabile and R. Riemer (1989b), “System Equivalent Reduction Expansion Process (SEREP),” Proceedings of the 7th International Modal Analysis Conference (IMAC), Las Vegas, Nevada, pp. 29–37.

    Google Scholar 

  • Pacia, A. B. (1988), “Using Modal Testing to Identify Dynamic Changes in Battle Damaged F-16 Wings,” Proceedings of the 59th Shock and Vibration Symposium. Albuquerque, New Mexico, pp. 337–359.

    Google Scholar 

  • Potter, J.E. (1966), “Matrix Quadratic Solutions,” SIAM J of Applied Math, Vol. 14, No. 3, pp. 496–501.

    Article  MathSciNet  MATH  Google Scholar 

  • Rajaram, S. and J. L. Junkins (1985), “Identification of Vibrating Flexible Structures,” Journal of Guidance, Control and Dynamics, Vol. 8, No. 4, pp. 463–470.

    Article  ADS  MATH  Google Scholar 

  • Rodden, W P. (1967), ‘A Method for Deriving Structural Influence Coefficients from Ground Vibration Tests,” AIAA Journal, Vol. 5, No. 5, pp. 991–1000.

    Article  ADS  MATH  Google Scholar 

  • Ross, R.G., Jr. (1971), “Synthesis of Stiffness and Mass Matrices from Experimental Vibration Modes”, SAE Paper No. 710–787.

    Google Scholar 

  • Sidhu, J. and D.J. Ewins, (1984), “Correlation of Finite Element and Modal ‘l’est Studies of A Practical Structure”, Proceedings of the 2nd International Modal Analysis Conference, Orlando, Florida, pp. 756–762.

    Google Scholar 

  • Slatter, J.C., A.R. Johnson, B. Fatemi, and J.L. Wiederrich, (1988), “Model Refinement Through a Statistical Analysis of a Mode Shape Difference Vector, Proceedings of the 6th International Modal Analysis Conference, Orlando, Florida, pp. 93–97.

    Google Scholar 

  • Smallwood, D.O. and D.L. Gregory, (1987), “Experimental Determination of the Mass Matrix Using a Constrained Least Squares Solution”, Proceedings of the 28th AIAA SDM Conference, Monterey, California, pp. 288–295.

    Google Scholar 

  • Smith, S. W and C. A. Beattie (1991), “Secant-Method Adjustment for Structural Models,” AIAA Journal, Vol. 29, No. 1, pp. 119–126.

    Article  ADS  Google Scholar 

  • Smith, S.W., and C.A. Beattie (1990), “Simultaneous Expansion and Orthogonalization of Measured Modes for Structure Identification,” Proceedings of the AIAA SEM Dynamic Specialists Conference, Long Beach, California, pp. 261–270.

    Google Scholar 

  • Smith, S. W and P. E. McGowan (1989), “Locating Damaged Members in a Truss Structure Using Modal Test Data: A Demonstration Experiment,” NASA Technical Memorandum 101–595.

    Google Scholar 

  • Srinathkumar, S. (1978) “Eigenvalue/Eigenvector Assignment using Output Feedback,” IEEE Transactions on Automatic Control, AC-23, 1, pp. 79–81.

    Google Scholar 

  • Stiles, P. and J. Kosmatka, (1989), “Comparison of Model Refinement Techniques”, Proceedings of the 30th AIAA SDM Conference, Mobile, Alabama, pp. 1052–1061.

    Google Scholar 

  • Tracy, J. J., D. J. Dimas and G. C. Pardoen (1984), ‘Advanced Composite Damage Detection Using Modal Analysis Techniques,” Proceedings of the 2nd International Modal Analysis Conference (IMAC), Orlando, Florida, pp. 655–660.

    Google Scholar 

  • Viswanathan, C.N., R.W. Longman, and P.W. Likins, (1984), ‘A Degree of Controllability Definition: Fundamental Concepts and Applications to Modal Systems,” AIAA Journal of Guidance and Control, Vol. 7, No. 2, pp. 222–230.

    Article  ADS  MATH  Google Scholar 

  • Wang, B.P., T.Y. Chen, F.H. Chu, (1986), “Model Refinement Using lest Data”, Proceedings of the 4th International Modal Analysis Conference, Los Angeles, California, pp. 1052–1057.

    Google Scholar 

  • Wei, M.L. and T. Janter, (1988), “Optimization of Mathematical Model Via Selected Physical Parameters”, Proceedings of the 6th International Modal Analysis Conference, Orlando, Florida, pp. 73–79.

    Google Scholar 

  • Wei, F.S. (1990), “Mass and Stiffness Interaction Effects in Analytical Model Modification”, AIAA Journal, Vol. 28, No. 9, pp. 1686–1688.

    Article  ADS  Google Scholar 

  • Wei, ES. (1980), “Stiffness Matrix Correction From Incomplete Test Data”, AIAA Journal, Vol. 18, pp. 1274–1275.

    Article  ADS  MATH  Google Scholar 

  • Wei, ES. and D.W. Zhang, (1989), “Mass Matrix Modification Using Element Correction Method”, AIAA Journal, Vol. 27, pp. 119–121.

    Article  ADS  Google Scholar 

  • Wei, M.L., R.J. Allemang, D.L. Brown, (1987), “Modal Scaling Considerations for Structural Modification Application”, Proceedings of the 5th International Modal Analysis Conference, London, England, pp. 1531–1537.

    Google Scholar 

  • Wei, F.S. (1990), “Analytical Dynamic Model Improvement Using Vibration Test Data”, AIAA Journal, Vol. 28, pp. 175–177.

    Article  ADS  Google Scholar 

  • Wei, F-S. (1990), “Mass and Stiffness Interaction Effects in Analytical Model Modification,” AIAA Journal, Vol. 28, No. 9, pp. 1686–1688.

    Article  ADS  Google Scholar 

  • West, W M., Jr. (1982), “Single Point Random Modal Test Technology Application to Failure Detection,” The Shock and Vibration Bulletin, No. 52, Part 4, pp. 25–31.

    Google Scholar 

  • White, C. W. and B. D. Maytum (1976), “Eigensolution Sensitivity to Parametric Model Perturbations,” Shock and Vibration Bulletin, Vol. 46, Part 5, pp. 123–133.

    Google Scholar 

  • Yao, J. T. P. (1983), “Damage Evaluation for Structural Reliability Assessment,” Nuclear Engineering Design, Vol. 75, No. 2, pp. 205–212.

    Article  Google Scholar 

  • Zhang, D.W., L.C. Zhao, (1990), “Inverse Weighted Residue Method and its Application to Model Correction”, Proceedings of the 8th International Modal Analysis Conference, Orlando, Florida, 1990, pp. 968–971.

    Google Scholar 

  • Zhang, Q., G. Lallement, (1987), “Dominant Error Localisation in a Finite Element Model of a Mechanical Structure”, Mechanical Systems and Signal Processing, Vol. 1, No. 2, pp. 141–149.

    Article  ADS  MATH  Google Scholar 

  • Zhang, Q., G. Lallement, R. Fillod, J. Piranda (1987), “A Complete Procedure for the Adjustment of a Mathematical Model from the Identified Complex Modes”, Proceedings of the 5th International Modal Analysis Conference, London, England, pp. 1183–1190.

    Google Scholar 

  • Zimmerman, D.C. (1991), A Darwinian Approach to the Actúator Number and Placement Problem with Nonnegligible Actuator Mass,” Proceedings of the 13th ASME Biennial Conference on Vibrations, Miami, Florida

    Google Scholar 

  • Zimmerman, D. and M. Widengren (1990), “Model Correction Using a Symmetric Eigenstructure Assignment Technique”,AIAA Journal, Vol. 28, No. 9. pp. 1670–1676.

    Google Scholar 

  • Zimmerman, D.C. and M. Widengren (1989), “Equivalence Relations for Model Correction of Nonproportionally Damped Linear Systems”, Proceedings of the Seventh VPI&SU Symposium on the Dynamics and Control of Large Structures Blacksburg, Virginia, pp. 523–538.

    Google Scholar 

  • Zimmerman, D.C. and M. Kaouk (1991), “An Inverse Problem Approach for Structural Damage Detection - Finite Element Model Refinement,” Proceedings of the Eighth VPI&SU Symposium on the Dynamics and Control of Large Structures, Blacksburg, Virginia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zimmerman, D.C., Smith, S.W. (1992). Model Refinement and Damage Location for Intelligent Structures. In: Tzou, H.S., Anderson, G.L. (eds) Intelligent Structural Systems. Solid Mechanics and Its Applications, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1903-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1903-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4192-0

  • Online ISBN: 978-94-017-1903-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics