Skip to main content
  • 94 Accesses

Abstract

The basic concept of safe and effective therapy for VT/VF has been the goal of the ICD, even during its early developmental stages. Thus, the concept of measuring a drop in right ventricular pressure as a means of detecting VF was abandoned in favor of the more reliable electrical signal monitoring.[1] Similarly, the early intravascular system was replaced by an epicardial system because of stability and safety concerns with the early right ventricular lead prototypes. The first generation of ICD lead system, which included an epicardial patch and a superior vena cava coil functioning as both sensing and defibrillating electrodes, was also quickly revised. Using the large area of a patch and a coil as a sensing mechanism had caused frequent oversensing of P waves, T waves, and post shock ST-T waves. The sensing method using probability density function (PDF), which detects a tachyarrhythmia based on the fraction of time the signal spends between positive and negative amplitude thresholds that are close to the baseline, was excellent in detecting VF. However, regular, non-sinusoidal VT was not reliably detected and hence, rate detection was soon added (AID-B and AID-BR units).[2] It was later noted that sensing reliability was markedly improved with the use of separate epicardial sensing leads placed closely together. This, along with two epicardial patches constituted the most commonly used epicardial ICD lead system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mirowski M, Mower MM, Staewen WS, et al. The development of the transvenous automatic defibrillator. Arch Intern Med, 1972; 129 (5): 773–779.

    Article  PubMed  CAS  Google Scholar 

  2. Winkle RA, Bach SM, Jr., Echt DS, et al. The automatic implantable defibrillator: local ventricular bipolar sensing to detect ventricular tachycardia and fibrillation. Am J Cardiol, 1983; 52 (3): 265–270.

    Article  PubMed  CAS  Google Scholar 

  3. Mirowski M, Reid PR, Winkle RA, et al. Mortality in patients with implanted automatic defibrillators. Ann Intern Med, 1983; 98 (5 Pt 1): 585–588.

    PubMed  CAS  Google Scholar 

  4. Echt DS, Armstrong K, Schmidt P, et al. Clinical experience, complications, and survival in 70 patients with the automatic implantable cardioverter/defibrillator. Circulation, 1985; 71 (2): 289–296.

    Article  PubMed  CAS  Google Scholar 

  5. Tacker WA, Jr., Galioto FM, Jr., Giuliani E, et al. Energy dosage for human trans-chest electrical ventricular defibrillation. N Eng11 Med, 1974; 290 (4): 214–215.

    Article  Google Scholar 

  6. Tacker WA, Jr., Morris GC, and Winters WL. Transchest ventricular defibrillation of a subject weighing 102.5 kg (225.9 lb). South Med J, 1975; 68 (6): 786–788.

    Article  PubMed  Google Scholar 

  7. Tacker WA, Jr., Guinn GA, Geddes LA, et al. The electrical dose for direct ventricular defibrillation in man. J Thorac Cardiovasc Surg, 1978; 75 (2): 224–226.

    PubMed  Google Scholar 

  8. Tacker WA, Jr., Resnekov L, and Geddes LA. Addressing the issue of dose levels for defibrillation [editorial]. Med Instrum, 1978; 12 (1): 10–11.

    PubMed  Google Scholar 

  9. Geddes LA, Tacker WA, Rosborough JP, et al. Electrical dose for ventricular defibrillation of large and small animals using precordial electrodes. J Clin Invest, 1974; 53 (1): 310–319.

    Article  PubMed  CAS  Google Scholar 

  10. Gold JH, Schuder IC, and Stoeckle H. Contour graph for relating per cent success in achieving ventricular defibrillation to duration, current, and energy content of shock. Am Heart J, 1979; 98 (2): 207–212.

    Article  PubMed  CAS  Google Scholar 

  11. Geddes LA, Tacker WA, Babbs CF, et al. Ventricular defibrillating threshold: strength-duration and percent-success curves. Med Biol Eng Comput, 1997; 35 (4): 301–305.

    Article  PubMed  CAS  Google Scholar 

  12. Davy JM, Fain ES, Dorian P, et al. The relationship between successful defibrillation and delivered energy in open-chest dogs: reappraisal of the “defibrillation threshold” concept. Am Heart J, 1987; 113 (1): 77–84.

    Article  PubMed  CAS  Google Scholar 

  13. Zipes DP. Electrophysiological mechanisms involved in ventricular fibrillation. Circulation, 1975;52(6 Suppl):111120–130.

    Google Scholar 

  14. Zipes DP, Fischer J, King RM, et al. Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am J Cardiol, 1975; 36 (1): 37–44.

    Article  PubMed  CAS  Google Scholar 

  15. Witkowski FX, Penkoske PA, and Plonsey R. Mechanism of cardiac defibrillation in open-chest dogs with unipolar DC- coupled simultaneous activation and shock potential recordings. Circulation, 1990; 82 (1): 244–260.

    Article  PubMed  CAS  Google Scholar 

  16. Sepulveda NG, Wikswo JP, Jr., and Echt DS. Finite element analysis of cardiac defibrillation current distributions. IEEE Trans Biomed Eng, 1990; 37 (4): 354–365.

    Article  PubMed  CAS  Google Scholar 

  17. Min X and Mehra R. Finite element analysis of defibrillation fields in a human torso model for ventricular defibrillation. Prog Biophys Mol Biol, 1998; 69 (2–3): 353–386.

    Article  PubMed  CAS  Google Scholar 

  18. Wang Y, Schimpf PH, Haynor DR, et al. Analysis of defibrillation efficacy from myocardial voltage gradients with finite element modeling. IEEE Trans Biomed Eng, 1999; 46 (9): 1025–1036.

    Article  PubMed  CAS  Google Scholar 

  19. Kamjoo K, Uchida T, Ikeda T, et al. Importance of location and timing of electrical stimuli in terminating sustained functional reentry in isolated swine ventricular tissues: evidence in support of a small reentrant circuit. Circulation, 1997; 96 (6): 2048–2060.

    Article  PubMed  CAS  Google Scholar 

  20. Roberts DE, Hersh LT, and Scher AM. Influence of cardiac fiber orientation on wavefront voltage, conduction velocity, and tissue resistivity in the dog. Circ Res, 1979; 44 (5): 701–712.

    Article  PubMed  CAS  Google Scholar 

  21. Balke CW, Lesh MD, Spear 1F, et al. Effects of cellular uncoupling on conduction in anisotropic canine ventricular myocardium. Cire Res, 1988; 63 (5): 879–892.

    Article  CAS  Google Scholar 

  22. Spach MS and Kootsey JM. The nature of electrical propagation in cardiac muscle. Am J Physiol, 1983; 244 (1): H3–22.

    PubMed  CAS  Google Scholar 

  23. Spach MS. The discontinuous nature of electrical propagation in cardiac muscle. Consideration of a quantitative model incorporating the membrane ionic properties and structural complexities. The ALZA distinguished lecture. Ann Biomed Eng, 1983; 11 (3–4): 209–261.

    PubMed  CAS  Google Scholar 

  24. Roberts DE and Scher AM. Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circ Res, 1982; 50 (3): 342–351.

    Article  PubMed  CAS  Google Scholar 

  25. Tung L, Sliz N, and Mulligan MR. Influence of electrical axis of stimulation on excitation of cardiac muscle cells. Circ Res, 1991; 69 (3): 722–730.

    Article  PubMed  CAS  Google Scholar 

  26. Frazier DW, Krassowska W, Chen PS, et al. Extracellular field required for excitation in three-dimensional anisotropic canine myocardium. Circ Res, 1988; 63 (1): 147–164.

    Article  PubMed  CAS  Google Scholar 

  27. Chen PS, Shibata N, Dixon EG, et al. Activation during ventricular defibrillation in open-chest dogs. Evidence of complete cessation and regeneration of ventricular fibrillation after unsuccessful shocks. J Clin Invest, 1986; 77 (3): 810–823.

    Article  PubMed  CAS  Google Scholar 

  28. Chen PS, Feld GK, Mower MM, et al. Effects of pacing rate and timing of defibrillation shock on the relation between the defibrillation threshold and the upper limit of vulnerability in open chest dogs. J Am Coll Cardiol, 1991; 18 (6): 1555–1563.

    Article  PubMed  CAS  Google Scholar 

  29. Ideker RE, Chen PS, and Zhou XH. Basic mechanisms of defibrillation. J Electrocardiol, I990;23(Suppl):36–38.

    Google Scholar 

  30. Daubert JP, Frazier DW, Wolf PD, et al. Response of relatively refractory canine myocardium to monophasic and biphasic shocks. Circulation, 1991; 84 (6): 2522–2538.

    Article  PubMed  CAS  Google Scholar 

  31. Kwaku KF and Dillon SM. Shock-induced depolarization of refractory myocardium prevents wave- front propagation in defibrillation. Circ Res, 1996; 79 (5): 957–973.

    Article  PubMed  CAS  Google Scholar 

  32. Dillon SM. Synchronized repolarization after defibrillation shocks. A possible component of the defibrillation process demonstrated by optical recordings in rabbit heart. Circulation, 1992; 85 (5): 1865–1878.

    Article  PubMed  CAS  Google Scholar 

  33. Swartz JF, Jones JL, Jones RE, et al. Conditioning prepulse of biphasic defibrillator waveforms enhances refractoriness to fibrillation wavefronts. Cire Res, 1991; 68 (2): 438–449.

    Article  CAS  Google Scholar 

  34. Trayanova N and Bray MA. Membrane refractoriness and excitation induced in cardiac fibers by monophasic and biphasic shocks. J Cardiovasc Electrophysiol, 1997; 8 (7): 745–757.

    Article  PubMed  CAS  Google Scholar 

  35. Trayanova NA, Aguel F, and Skouibine K. Extension of refractoriness in a model of cardiac defibrillation. Pac Symp Biocomput, 1999: 240–251.

    Google Scholar 

  36. Chen PS, Wolf PD, Claydon FJ, et al. The potential gradient field created by epicardial defibrillation electrodes in dogs. Circulation, 1986; 74 (3): 626–636.

    Article  PubMed  CAS  Google Scholar 

  37. Wharton 1M, Wolf PD, Smith WM, et al. Cardiac potential and potential gradient fields generated by single, combined, and sequential shocks during ventricular defibrillation. Circulation, 1992; 85 (4): 1510–1523.

    Article  Google Scholar 

  38. Tovar O and Tung L. Electroporation of cardiac cell membranes with monophasic or biphasic rectangular pulses. Pacing Clin Electrophysiol, 1991; 14 (11 Pt 2): 1887–1892.

    Article  PubMed  CAS  Google Scholar 

  39. Jones JL and Jones RE. Determination of safety factor for defibrillator waveforms in cultured heart cells. Am J Physiol, 19822,42(4):H662–670.

    Google Scholar 

  40. Jones JL, Jones RE, and Balasky G. Microlesion formation in myocardial cells by high-intensity electric field stimulation. Am J Physiol, 1987; 253 (2 Pt 2): H480–486.

    PubMed  CAS  Google Scholar 

  41. Walcott GP, Walcott KT, and Ideker RE. Mechanisms of defibrillation. Critical points and the upper limit of vulnerability. J Electrocardiol, 1995;28(Suppl):l-6.

    Google Scholar 

  42. Swerdlow CD, Martin DJ, Kass RM, et al. The zone of vulnerability to T wave shocks in humans. J Cardiovasc Electrophysiol, 1997; 8 (2): 145–154.

    Article  PubMed  CAS  Google Scholar 

  43. Hwang C, Swerdlow CD, Kass RM, et al. Upper limit of vulnerability reliably predicts the defibrillation threshold in humans. Circulation, 1994; 90 (5): 2308–2314.

    Article  PubMed  CAS  Google Scholar 

  44. Swerdlow CD, Ahern T, Kass RM, et al. Upper limit of vulnerability is a good estimator of shock strength associated with 90% probability of successful defibrillation in humans with transvenous implantable cardioverter-defibrillators. J Am Coll Cardiol, 1996; 27 (5): 1112–1118.

    Article  PubMed  CAS  Google Scholar 

  45. Swerdlow CD, Davie S, Ahern T, et al. Comparative reproducibility of defibrillation threshold and upper limit of vulnerability. Pacing Clin Electrophysiol, 1996; 19 (12 Pt 1): 2103–2111.

    Article  PubMed  CAS  Google Scholar 

  46. Chen PS, Swerdlow CD, Hwang C, et al. Current concepts of ventricular defibrillation. J Cardiovasc Electrophysiol, 1998; 9 (5): 553–562.

    Article  PubMed  CAS  Google Scholar 

  47. Jones DL, Klein GJ, Guiraudon GM, et al. Internal cardiac defibrillation in man: pronounced improvement with sequential pulse delivery to two different lead orientations. Circulation, 1986; 73 (3): 484–491.

    Article  PubMed  CAS  Google Scholar 

  48. Bourland JD, Tacker WA, Jr., Wessale JL, et al. Sequential pulse defibrillation for implantable defibrillators. Med Instrum, 1986; 20 (3): 138–142.

    PubMed  CAS  Google Scholar 

  49. Kallok MJ, Bourland JD, Tacker WA, et al. Optimization of epicardial electrode size and implant site for reduced sequential pulse defibrillation thresholds. Med Instrum, 1986; 20 (1): 36–39.

    PubMed  CAS  Google Scholar 

  50. Jones DL, Klein W, Guiraudon GM, et al. Sequential pulse defibrillation in man: comparison of thresholds in normal subjects and those with cardiac disease. Med lnstrum, 1987; 21 (3): 166–169.

    CAS  Google Scholar 

  51. Bardy GH, Stewart RB, Ivey TD, et al. Intraoperative comparison of sequential-pulse and single- pulse defibrillation in candidates for automatic implantable defibrillators. Am 1 Cardiol, 1987; 60 (7): 618–624.

    Article  CAS  Google Scholar 

  52. Bardy GH, Ivey TD, Allen MD, et al. Prospective comparison of sequential pulse and single pulse defibrillation with use of two different clinically available systems. J Am Coll Cardiol, 1989; 14 (1): 165–171.

    Article  PubMed  CAS  Google Scholar 

  53. Hammel D, Block M, Hachenberg T, et al. Implantable cardioverter/defibrillators (ICD): a new lead-system using transvenous-subcutaneous approach in patients with prior cardiac surgery [see comments]. Eur J Cardiothorac Surg, 1991; 5 (6): 315–318.

    Article  PubMed  CAS  Google Scholar 

  54. Dixon EG, Tang AS, Wolf PD, et al. Improved defibrillation thresholds with large contoured epicardial electrodes and biphasic waveforms. Circulation, 1987; 76 (5): 1176–1184.

    Article  PubMed  CAS  Google Scholar 

  55. Winkle RA, Mead RH, Ruder MA, et al. Improved low energy defibrillation efficacy in man with the use of a biphasic truncated exponential waveform. Am Heart J, 1989; 117 (1): 122–127.

    Article  PubMed  CAS  Google Scholar 

  56. Fain ES, Sweeney MB, and Franz MR. Improved internal defibrillation efficacy with a biphasic waveform. Am Heart J, 1989; 117 (2): 358–364.

    Article  PubMed  CAS  Google Scholar 

  57. Bardy GH, Ivey TD, Allen MD, et al. A prospective randomized evaluation of biphasic versus monophasic waveform pulses on defibrillation efficacy in humans. J Am Coll Cardiol, 1989; 14 (3): 728–733.

    Article  PubMed  CAS  Google Scholar 

  58. Zhou XH, Knisley SB, Wolf PD, et al. Prolongation of repolarization time by electric field stimulation with monophasic and biphasic shocks in open-chest dogs. Circ Res, 1991;68(6):17611767.

    Google Scholar 

  59. Jones JL, Swartz JF, Jones RE, et al. Increasing fibrillation duration enhances relative asymmetrical biphasic versus monophasic defibrillator waveform efficacy. Circ Res, 1990; 67 (2): 376–384.

    Article  PubMed  CAS  Google Scholar 

  60. Murakawa Y, Yamashita T, Sezaki K, et al. Postshock recovery interval of relatively refractory myocardium as a possible explanation for disparate defibrillation efficacy between monophasic and biphasic waveforms. Pacing Clin Electrophysiol, 1998; 21 (6): 1247–1253.

    Article  PubMed  CAS  Google Scholar 

  61. Huang J, KenKnight BH, Walcott GP, et al. Effects of transvenous electrode polarity and waveform duration on the relationship between defibrillation threshold and upper limit of vulnerability. Circulation, 1997; 96 (4): 1351–1359.

    Article  PubMed  CAS  Google Scholar 

  62. Keelan ET, Sra JS, Axtell K, et al. The effect of polarity of the initial phase of a biphasic shock waveform on the defibrillation threshold of pectorally implanted defibrillators. Pacing Clin Electrophysiol, 1997; 20 (2 Pt 1): 337–342.

    Article  PubMed  CAS  Google Scholar 

  63. Olsovsky MR, Shorofsky SR, and Gold MR. Effect of shock polarity on biphasic defibrillation thresholds using an active pectoral lead system. J Cardiovasc Electrophysiol, 1998; 9 (4): 350–354.

    Article  PubMed  CAS  Google Scholar 

  64. Roberts PR, Allen S, Smith DC, et al. Improved efficacy of anodal biphasic defibrillation shocks following a failed defibrillation attempt. Pacing Clin Electrophysiol, 1999; 22 (12): 1753–1759.

    Article  PubMed  CAS  Google Scholar 

  65. Schauerte P, Stellbrink C, Schondube FA, et al. Polarity reversal improves defibrillation efficacy in patients undergoing transvenous cardioverter defibrillator implantation with biphasic shocks. Pacing Clin Electrophysiol, 1997; 20 (2 Pt 1): 301–306.

    Article  PubMed  CAS  Google Scholar 

  66. Shorofsky SR and Gold MR. Effects of waveform and polarity on defibrillation thresholds in humans using a transvenous lead system. Am J Cardiol, 1996; 78 (3): 313–316.

    Article  PubMed  CAS  Google Scholar 

  67. Natale A, Sra J, Dhala A, et al. Effects of initial polarity on defibrillation threshold with biphasic pulses. Pacing Clin Electrophysiol, 1995; 18 (10): 1889–1893.

    Article  PubMed  CAS  Google Scholar 

  68. Yamanouchi Y, Mowrey KA, Nadzam GR, et al. Effects of polarity on defibrillation thresholds using a biphasic waveform in a hot can electrode system. Pacing Clin Electrophysiol, 1997; 20 (12 Pt 1): 2911–2916.

    Article  PubMed  CAS  Google Scholar 

  69. Neuzner J, Pitschner HF, Schwarz T, et al. Effects of electrode polarity on defibrillation thresholds in biphasic endocardial defibrillation. Am J Cardiol, 1996; 78 (1): 96–97.

    Article  PubMed  CAS  Google Scholar 

  70. Cooper RA, Wallenius ST, Smith WM, et al. The effect of phase separation on biphasic waveform defibrillation. Pacing Clin Electrophysiol, 1993; 16 (3 Pt 1): 471–482.

    Article  PubMed  CAS  Google Scholar 

  71. Walcott GP, Walker RG, Cates AW, et al. Choosing the optimal monophasic and biphasic waveforms for ventricular defibrillation. 1 Cardiovasc Electrophysiol, 1995; 6 (9): 737–750.

    Article  CAS  Google Scholar 

  72. Swerdlow CD, Kass RM, Davie S, et al. Short biphasic pulses from 90 microfarad capacitors lower defibrillation threshold. Pacing Clin Electrophysiol, 1996; 19 (7): 1053–1060.

    Article  PubMed  CAS  Google Scholar 

  73. Schauerte P, Schondube FA, Grossmann M, et al. Influence of phase duration of biphasic waveforms on defibrillation energy requirements with a 70-microF capacitance. Circulation, 1998;97(20):20732078.

    Google Scholar 

  74. Geddes LA, Bourland JD, and Tacker WA. Energy and current requirements for ventricular defibrillation using trapezoidal waves. Am J Physiol, 1980; 238 (2): H231–236.

    PubMed  CAS  Google Scholar 

  75. Wessale JL, Bourland JD, Tacker WA, et al. Bipolar catheter defibrillation in dogs using trapezoidal waveforms of various tilts. J Electrocardiol, 1980; 13 (4): 359–365.

    Article  PubMed  CAS  Google Scholar 

  76. Hinds M, Ayers GM, Bourland JD, et al. Comparison of the efficacy of defibrillation with the damped sine and constant-tilt current waveforms in the intact animal. Med htstrum, 1987; 21 (2): 9296.

    Google Scholar 

  77. Poole JE, Bardy GH, Kudenchuk PJ, et al. Prospective randomized comparison of biphasic waveform tilt using a unipolar defibrillation system. Pacing Clin Electrophysiol, 1995;18(7):13691373.

    Google Scholar 

  78. Shorofsky SR, Foster AH, and Gold MR. Effect of waveform tilt on defibrillation thresholds in humans. J Cardiovasc Electrophysiol, 1997; 8 (5): 496–501.

    Article  PubMed  CAS  Google Scholar 

  79. Block M and Breithardt G. Optimizing defibrillation through improved waveforms. Pacing Clin Electrophysiol, 1995; 18 (3 Pt 2): 526–538.

    Article  PubMed  CAS  Google Scholar 

  80. Swartz JF, Fletcher RD, and Karasik PE. Optimization of biphasic waveforms for human nonthoracotomy defibrillation. Circulation, 1993; 88 (6): 2646–2654.

    Article  PubMed  CAS  Google Scholar 

  81. Strickberger SA, Hummel JD, Horwood LE, et al. Effect of shock polarity on ventricular defibrillation threshold using a transvenous lead system. J Am Coll Cardiol, 1994; 24 (4): 1069–1072.

    Article  PubMed  CAS  Google Scholar 

  82. Devanathan T, Sluetz JE, and Young KA. In vivo thrombogenicity of implantable cardiac pacing leads. Biomater Med Devices Artif Organs, 1980; 8 (4): 369–379.

    PubMed  CAS  Google Scholar 

  83. Pande GS. Thermoplastic polyurethanes as insulating materials for long-life cardiac pacing leads. Pacing Clin Electrophysiol, 1983; 6 (5 Pt 1): 858–867.

    Article  PubMed  CAS  Google Scholar 

  84. Bruck SD and Mueller EP. Materials aspects of implantable cardiac pacemaker leads. Med Prog Techuol, 1988; 13 (3): 149–160.

    CAS  Google Scholar 

  85. Furman S, Benedek ZM, Andrews CA, et al. Long-term follow-up of pacemaker lead systems: establishment of standards of quality. Pacing Clin Electrophysiol, 1995; 18 (2): 271–285.

    Article  PubMed  CAS  Google Scholar 

  86. Kertes P, Mond H, Sloman G, et al. Comparison of lead complications with polyurethane tined, silicone rubber tined, and wedge tip leads: clinical experience with 822 ventricular endocardial lads. Pacing Clin Electrophysiol, 1983; 6 (5 Pt 1): 957–962.

    Article  PubMed  CAS  Google Scholar 

  87. Barbaro V, Bosi C, Caiazza S, et al. Implant effects on polyurethane and silicone cardiac pacing leads in humans: insulation measurements and SEM observations. Biomaterials, 1985; 6(1): 28–32.

    Article  PubMed  CAS  Google Scholar 

  88. Sethi KK, Pandit N, Bhargava M, et al. Long term performance of silicone insulated and polyurethane insulated cardiac pacing leads. Indian Heart J, 1992; 44 (3): 145–149.

    PubMed  CAS  Google Scholar 

  89. de Voogt WG. Pacemaker leads: performance and progress. Am J Cardiol, 1999;83(5B):187D- 191D.

    Google Scholar 

  90. Dolezel B, Adamirova L, Vondracek P, et al. In vivo degradation of polymers. II. Change of mechanical properties and cross-link density in silicone rubber pacemaker lead insulations during long-term implantation in the human body. Biomaterials, 1989; 10 (6): 387–392.

    Article  PubMed  CAS  Google Scholar 

  91. Antonelli D, Rosenfeld T, Freedberg NA, et al. Insulation lead failure: is it a matter of insulation coating, venous approach, or both? Pacing Clin Electrophysiol, 1998; 21 (2): 418–421.

    Article  PubMed  CAS  Google Scholar 

  92. Mugica J, Daubert JC, Lazarus B, et al. Is polyurethane lead insulation still controversial? Pacing Clin Electrophysiol, 1992; 15 (11 Pt 2): 1967–1970.

    Google Scholar 

  93. Tengvall P and Lundstrom 1. Physico-chemical considerations of titanium as a biomaterial. Clin Mater, 1992; 9 (2): 115–134.

    Article  PubMed  CAS  Google Scholar 

  94. Wiegand UK, Zhdanov A, Stammwitz E, et al. Electrophysiological performance of a bipolar membrane-coated titanium nitride electrode: a randomized comparison of steroid and nonsteroid lead designs. Pacing Clin Electrophysiol, 1999; 22 (6 Pt 1): 935–941.

    Article  PubMed  CAS  Google Scholar 

  95. Bourke JP, Jameson S, Howell L, et al. “Are the differences between ‘high performance’ pacing leads clinically significant? A comparison of sintered platinum and activated carbon”. Int J Artif Organs, 1987; 10 (1): 61–65.

    PubMed  CAS  Google Scholar 

  96. Bourke JP, Howell L, Murray A, et al. Do electrode and lead design differences for permanent cardiac pacing translate into clinically demonstrable differences? (Comparison of sintered platinum and activated vitreous and porous carbon electrodes). Pacing Clin Electrophysiol, 1989;12(8):1419–1425.

    Google Scholar 

  97. Karpawich PP, Stokes KB, Helland JR, et al. A new low threshold platinized epicardial pacing electrode: comparative evaluation in immature canines. Pacing Clin Electrophysiol, 1988; 11 (8): 1139–1148.

    Article  PubMed  CAS  Google Scholar 

  98. Midei MG, Jones BR, and Brinker JA. A comparison of platinized grooved electrode performance with ring-tip electrodes. Pacing Clin Electrophysiol, 1989; 12 (5): 752–756.

    Article  PubMed  CAS  Google Scholar 

  99. Stewart S, Cohen J, and Murphy G. Sutureless epicardial pacemaker lead: a satisfactory preliminary experience. Chest, 1975: 67 (5): 564–567.

    Article  PubMed  CAS  Google Scholar 

  100. Stokes K and Bird T. A new efficient NanoTip lead. Pacing Clin Electrophysiol, 1990; 13 (12 Pt 2): 1901–1905.

    Article  PubMed  CAS  Google Scholar 

  101. Wiegand UK, Potratz J, Luninghake F, et al. Electrophysiological characteristics of bipolar membrane carbon leads with and without steroid elution compared with a conventional carbon and a steroid-eluting platinum lead. Pacing Clin Electrophysiol, 1996; 19 (8): 1155–1161.

    Article  PubMed  CAS  Google Scholar 

  102. Molajo AO, Bowes RJ, Fananapazir L, et al. Comparison of vitreous carbon and elgiloy transvenous ventricular pacing leads. Pacing Clin Electrophysiol, 1985; 8 (2): 261–265.

    Article  PubMed  CAS  Google Scholar 

  103. Pioger G and Garberoglio B. Pacemaker electrodes and problems related to cardiac pacing and sensing: current solutions and future trends. Life Support Syst, 1984; 2 (3): 169–181.

    PubMed  CAS  Google Scholar 

  104. Jung W, Manz M, Moosdorf R, et al. Failure of an implantable cardioverter-defibrillator to redetect ventricular fibrillation in patients with a nonthoracotomy lead system [see comments]. Circulation, 1992; 86 (4): 1217–1222.

    Article  PubMed  CAS  Google Scholar 

  105. Greatbatch W and Holmes CF. The lithium/iodine battery: a historical perspective. Pacing Clin Electrophysiol, 1992; 15 (11 Pt 2): 2034–2036.

    Article  PubMed  CAS  Google Scholar 

  106. Takeuchi E and Quattrini J. Batteries for implantable defibrillators. Med Electronics, 1989; 119: 114117.

    Google Scholar 

  107. Swerdlow CD, Kass RM, Chen PS, et al. Effect of capacitor size and pathway resistance on defibrillation threshold for implantable defibrillators. Circulation, 1994; 90 (4): 1840–1846.

    Article  PubMed  CAS  Google Scholar 

  108. Leonelli FM, Kroll MW, and Brewer JE. Defibrillation thresholds are lower with smaller storage capacitors. Pacing Clin Electrophysiol, 1995; 18 (9 Pt 1): 1661–1665.

    Article  PubMed  CAS  Google Scholar 

  109. Alt E, Evans F, Wolf PD, et al. Does reducing capacitance have potential for further miniaturisation of implantable defibrillators? Heart, 1997; 77 (3): 234–237.

    Article  PubMed  CAS  Google Scholar 

  110. Winkle RA, Mead RH, Ruder MA, et al. Effect of duration of ventricular fibrillation on defibrillation efficacy in humans. Circulation, 1990; 81 (5): 1477–1481.

    Article  PubMed  CAS  Google Scholar 

  111. Bardy GH, Ivey TD, Allen M, et al. A prospective, randomized evaluation of effect of ventricular fibrillation duration on defibrillation thresholds in humans. J Am Coll Cardiol, 1989;13(6):13621366.

    Google Scholar 

  112. Thou X, Daubert JP, Wolf PD, et al. Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs. Circ Res, 1993; 72 (1): 145–160.

    Article  Google Scholar 

  113. Bourland JD, Tacker WA, Jr., and Geddes LA. Strength-duration curves for trapezoidal waveforms of various tilts for transchest defibrillation in animals. Med Instrum, 1978; 12 (1): 38–41.

    PubMed  CAS  Google Scholar 

  114. Rattes MF, Jones DL, Sharma AD, et al. Defibrillation threshold: a simple and quantitative estimate of the ability to defibrillate. Pacing Clin Electrophysiol, 1987; 10 (1 Pt 1): 70–77.

    Article  PubMed  CAS  Google Scholar 

  115. McDaniel WC and Schuder JC. The cardiac ventricular defibrillation threshold: inherent limitations in its application and interpretation. Med Instrum, 1987; 21 (3): 170–176.

    PubMed  CAS  Google Scholar 

  116. Jones DL, Irish WD, and Klein GJ. Defibrillation efficacy. Comparison of defibrillation threshold versus dose-response curve determination. Circ Res, 1991; 69 (1): 45–51.

    Article  PubMed  CAS  Google Scholar 

  117. Church T, Martinson M, Kallok M, et al. A model to evaluate alternative methods of defibrillation threshold determination. Pacing Clin Electrophysiol, 1988; 11 (11 Pt 2): 2002–2007.

    Article  PubMed  CAS  Google Scholar 

  118. Josephson ME, Horowitz LN, Farshidi A, et al. Recurrent sustained ventricular tachycardia. 1. Mechanisms. Circulation, 1978; 57 (3): 431–440.

    Article  CAS  Google Scholar 

  119. Bardy GH, Ivey TD, Stewart R, et al. Failure of the automatic implantable defibrillator to detect ventricular fibrillation. Am J Cardiol, 1986; 58 (11): 1107–1108.

    Article  PubMed  CAS  Google Scholar 

  120. Ellenbogen KA, Wood MA, Stambler BS, et al. Measurement of ventricular electrogram amplitude during intraoperative induction of ventricular tachyarrhythmias. Am J Cardiol, 1992;70(11):10171022.

    Google Scholar 

  121. Leitch JW, Yee R, Klein GJ, et al. Correlation between the ventricular electrogram amplitude in sinus rhythm and in ventricular fibrillation. Pacing Clin Electrophysiol, 1.990;13(9):1105–1109.

    Google Scholar 

  122. Singer I, de Borde R, Veltri EP, et al. The automatic implantable cardioverter defibrillator: T wave sensing in the newest generation. Pacing Clin Electrophysiol, 1988; 11 (11 Pt 1): 1584–1591.

    Article  PubMed  CAS  Google Scholar 

  123. Kelly PA, Mann DE, Damle RS, et al. Oversensing during ventricular pacing in patients with a third-generation implantable cardioverter-defibrillator. J Am Coll Cardiol, 1994; 23 (7): 1531–1534.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liem, L.B. (2001). Device Operation. In: Implantable Cardioverter-Defibrillator. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1837-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1837-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5627-6

  • Online ISBN: 978-94-017-1837-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics