Skip to main content

The Evaluation of Hypoxia in Diabetes

  • Chapter
Imaging of Hypoxia

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 33))

  • 163 Accesses

Abstract

The prognosis for diabetic patients who maintain glycemic control through diet, exercise or the use of insulin or other glycemic control medication remains very good. However, even in the presence of good disease control, long term diabetes patients are prone to a variety of complications that contribute to morbidity and mortality. The majority of these complications have their basis in macrovascular and microvascular changes that appear to arise in susceptible individuals, and to some extent in all diabetic patients regardless of the care taken in the management of their disease. Among the major complications faced by diabetic patients are retinopathy, neuropathy and the diabetic foot syndrome. In each of these conditions an underlying microvascular pathology is evident. This microangiopathy has a multifunctional pathogenesis although it is believed that a primary mechanism is at work from the beginning of diabetes which contributes to progressive vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jilal I, Chait A. Pathogenesis of macroangiopathy in diabetes. In: Draznin B, Melmed S, LeRoith (eds). Complication of diabetes mellitus. Alan R. Liss Inc.: New York, 1989: 69–75.

    Google Scholar 

  2. Cahil G Jr. Current concepts of diabetes. In: Bradley RF, Christlieb AR, Soeldner JS. Diabetes mellitus. Lea & Febiger: Philadelphia, 1985: 1–11.

    Google Scholar 

  3. Akers DL, Cohen G, Kerstein MD. Peripheral vascular disease and the diabetic patient. In: Kerstein MD. Diabetes and vascular disease. J.B.Lippincott Company: Philadelphia, 1990: 241–266.

    Google Scholar 

  4. Kreines K, Johnson E, Albrink M, Knatterud GL, Levin ME, Lewitan A, Newberry W, Rose FA. The course of peripheral vascular disease in non-insulin-dependent diabetes. Diabetes Care 1985; 8: 235–51.

    Article  CAS  PubMed  Google Scholar 

  5. Levin ME, O’Neil LW, Bowker JH. The diabetic foot. 5th edn.: Mosby: St. Louis, 1993.

    Google Scholar 

  6. King GL, Brownlee M. The cellular and molecular mechanisms of diabetic complications. Endocrinol Metab Clin North Am 1996; 25: 255–70.

    Article  CAS  PubMed  Google Scholar 

  7. Greene DA, Lattimer SA, Sima AA. Sorbital, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. New Engl J Med 1987; 316: 599–606.

    Article  CAS  PubMed  Google Scholar 

  8. Flath MC, Bylander JE, Sens DA. Variation in sorbitol accumulation and polyol-pathway activity in cultured human proximal tubule cells. Diabetes 1992; 41: 1050–5.

    Article  CAS  PubMed  Google Scholar 

  9. Sakakibara F, Hotta N, Koh N, Sakamoto N. Effects of high glucose concentrations and epalrestat on sorbitol and myo-inositol metabolism in cultured rabbit aortic smooth muscle cells. Diabetes 1993; 42: 1594–1600.

    Article  CAS  PubMed  Google Scholar 

  10. Loy A, Lurie KG, Ghosh A, Wilson JM, MacGregor LC, Matchinsky FM. Diabetes and the myoinositol paradox. Diabetes 1990; 39: 1305–12.

    Article  CAS  PubMed  Google Scholar 

  11. Yamashita T, Umeda F, Hashimoto T, Inoguchi T, Yamauchi T, Mimura K, Watanabe J, Nawata H. Effect of glucose on Na, K-ATPase activity in cultured bovine aortic endothelial cells. Endocrinol Jpn 1992; 39: 1–7.

    Article  CAS  PubMed  Google Scholar 

  12. Kehrer JP, Lund LG. Cellular reducing equivalents and oxidative stress. Free Radic Biol Med 1994; 17: 65–75.

    Article  CAS  PubMed  Google Scholar 

  13. Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, Nyengaard JR, van den Enden M, Kilo C, Tilton RG. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 1993; 42: 801–13.

    Article  CAS  PubMed  Google Scholar 

  14. Roy S, Sen CK, Tritschler HJ, Packer L. Modulation of cellular reducing equivalent homeostasis by alpha-lipoic acid. Biochem Pharmacol 1997; 53: 393–9.

    Article  CAS  PubMed  Google Scholar 

  15. Vlassara H. Receptor-mediated interactions of advanced glycosylation end products with cellular components within diabetic tissues. Diabetes 1992; 41 suppl 2: 52–6.

    Google Scholar 

  16. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissues and the biochemical basis of diabetic complications. New Engl J Med 1988; 318: 1315–21.

    Article  CAS  PubMed  Google Scholar 

  17. Anderson SS, Tsilibary EC, Charonis AS. Nonenzymatic glycosylation-induced modifications of intact bovine kidney tubular basement membrane. J Clin Invest 1993; 92: 3045–52.

    Article  CAS  PubMed  Google Scholar 

  18. Vlassara H, Brownlee M, Manogue KR, Dinarello CA, Pasagian A. Cachetin/TNF and IL-1 induced by glucose modified proteins: role in normal tissue remodelling. Science 1988; 240: 1546–8.

    Article  CAS  PubMed  Google Scholar 

  19. Vlassara H, Fuh H, Makita Z, Krunykrai S, Cerami A, Bucala R. Endogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci USA 1992; 89: 12043–7.

    Article  CAS  PubMed  Google Scholar 

  20. Haitoglou CS, Tsilibary EC, Brownlee M, Charonis AS. Altered cellular interactions between endothelial cells and nonenzymatically glycosylated lamelin/type IV collagen. J Biol Chem 1992; 267: 12404–7.

    CAS  PubMed  Google Scholar 

  21. Makita Z, Vlassara H, Cerami A, Bucala R. Immunochemical detection of advanced glycosylated end products in vivo. J Biol Chem 1992; 267: 5133–8.

    CAS  PubMed  Google Scholar 

  22. Craven PA, Davidson CM, De Rubertis FR. Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes 1990; 39: 667–74.

    Article  CAS  PubMed  Google Scholar 

  23. Padayatti SJ, Orme S, Zenobi PD, Stickland MH, Belchetz PE, Grant PJ. The effects of insulin-like growth factor-1 on plasminogen activator inhibitor-1 synthesis and secretion: results from in vitro and in vivo studies. Thromb Haemost 1993; 70: 1009–13.

    Google Scholar 

  24. Lee TS, Saltsman KA, Ohashi H, King GL. Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the development of diabetic vascular complications. Proc Natl Acad Sci USA 1989; 86: 5141–5.

    Article  CAS  PubMed  Google Scholar 

  25. Wolf BA, Williamson JR, Easrom RA, Chang K, Sherman WR, Turk J. Diacylglycerol accumulation and microvascular abnormalities induced by elevated glucose levels. J Clin Invest 1991; 87: 31–8.

    Article  CAS  PubMed  Google Scholar 

  26. Yasuda H, Dyck PJ. Abnormalities of endoneurial microvessels and sural nerve pathology in diabetic neuropathy. Neurology 1987; 37: 20–8.

    Article  CAS  PubMed  Google Scholar 

  27. Barnett AH. Pathogenesis of diabetic microangiopathy: an overview. Am J Med 1991; 90: 67s - 73s.

    Article  CAS  PubMed  Google Scholar 

  28. Olgemoller B, Schwaabe S, Gerbitz KD, Schleicher ED. Elevated glucose decreases the content of a basement membrane associated heparan sulphate proteoglycan in proliferating cultured porcine mesangial cells. Diabetologia 1992; 35: 183–6.

    Article  CAS  PubMed  Google Scholar 

  29. Shimomura H, Spiro RG. Studies on macromolecular components of human glomerular basement membrane and alterations in diabetes. Decreased levels of heparan sulfate, proteoglycan and lamelin. Diabetes 1987; 36: 374–81.

    Article  CAS  PubMed  Google Scholar 

  30. Shami SK, Chittenden SJ. Microangiopathy in diabetes mellitus: II. Features, complications and investigations. Diabetes Res 1991; 17: 157–68.

    CAS  PubMed  Google Scholar 

  31. Almdal TP, Norgaard K, Feldt-Rasmussen B, Deckert T. The predictive value of microalbuminuria in IDDM. A five-year follow-up study. Diabetes Care 1994; 17: 120–5.

    Article  CAS  PubMed  Google Scholar 

  32. Coonrood BA, Ellis D, Becker DJ, Bunker CH, Kelsey SF, Lloyd CE, Drash AL, Kuller LH, Orchard TJ. Predictors of microalbuminuria in individuals with IDDM. Pittsburg Epidemiology of Diabetes Complications Study. Diabetes Care 1993; 16: 1376–83.

    Article  Google Scholar 

  33. Mandarino LJ. Current hypotheses for the biochemical basis of diabetic retinopathy. Diabetes Care 1992; 15: 1892–901.

    Article  CAS  PubMed  Google Scholar 

  34. Pe’er J, Shweiki D, Itin A, Hemo I, Gnessin H, Keshet E. Hypoxia-induced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases. Lab Invest 1995; 72: 638–45.

    PubMed  Google Scholar 

  35. Murata T, Ishibashi T, Khalil A, Hata Y, Yoshikawa H, Inomata H. Vascular endothelial growth factor plays a role in hyperpermeability of diabetic retinal vessels. Opthalmic Res 1995; 27: 48–52.

    Article  CAS  Google Scholar 

  36. Grone Hi Simon M, Grone EF. Expression of endothelial growth factor in renal vascular disease and renal allografts. J Pathol 1995; 177: 259–67.

    Article  CAS  PubMed  Google Scholar 

  37. Tooke JE. Peripheral vascular disease in diabetes. Diabetes Res Clin Pract 1996; 30: 61–5.

    Article  PubMed  Google Scholar 

  38. Tooke JE. Microvascular function in human diabetes. A physiological perspective. Diabetes 1995; 44: 721–6.

    Article  CAS  PubMed  Google Scholar 

  39. Parving HH, Viberti Gc, Keen H, Christiansen JS, Lassen NA. Haemodynamic factors in the genesis of diabetic microangiopathy. Metabolism 1983; 32: 943–9.

    Article  CAS  PubMed  Google Scholar 

  40. Faris I, Vagn-Nielson H, Henriksen O, Parving HH, Lassen NA. Impaired autoregulation of blood flow in skeletal muscle and subcutaneous tissue in long-term Type 1 (insulin dependent) diabetic patients with microangiopathy. Diabetologia 1983; 25: 486–8.

    Article  CAS  PubMed  Google Scholar 

  41. Rayman G, Hassan A, Tooke JE. Blood flow in the skin of the foot related to posture in diabetes mellitus. Br Med J Clin Res Ed 1986; 292: 87–90.

    Article  CAS  PubMed  Google Scholar 

  42. Kohner EM, Palel V, Rassam SM. Role of blood flow and impaired autoregulation in the pathogenesis of diabetic retinopathy. Diabetes 1995; 44: 603–7.

    Article  CAS  PubMed  Google Scholar 

  43. Patel V, Rassam S, Newsom R, Wiek J, Kohner E. Retinal blood flow in diabetic retinopathy. B M J 1992; 305: 678–83.

    CAS  Google Scholar 

  44. Earle K, Viberti GC. Familial, hemodynamic and metabolic factors in the predisposition to diabetic kidney disease. Kidney Int 1994; 45: 434–7.

    Article  CAS  PubMed  Google Scholar 

  45. Netten PM, Wollersheim H, Thien T, Lutterman JA. Skin microcirculation of the foot in diabetic neuropathy. Clin Sci Colch 1996; 91: 559–65.

    CAS  PubMed  Google Scholar 

  46. Flynn MD, Edmonds ME, Tooke JE, Watkins PJ. Direct measurement of capillary blood flow in the diabetic neuropathie foot. Diabetologia 1988; 31: 652–6.

    Article  CAS  PubMed  Google Scholar 

  47. Pirart J. Diabetes mellitus and its degenerative complications: a prospective study of 4400 patients observed. Diabete Metab 1977; 3: 97–107, 173–82, 245–56.

    Google Scholar 

  48. Veves A, Sarnow MR. Diagnosis, classification, and treatment of diabetic peripheral neuropathy. Clin Podiatr Med Surg 1995; 12: 19–30.

    CAS  PubMed  Google Scholar 

  49. Tesfaye S, Malik R, Ward JD. Vascular factors in diabetic neuropathy. Diabetologia 1994, 37: 84754.

    Article  Google Scholar 

  50. Horowitz SH. Diabetic neuropathy. Clin Orthop 1993; 296: 78–85.

    PubMed  Google Scholar 

  51. Dyck PJ, Giannini C. Pathological alterations in the diabetic neuropathies of humans: a review. J Neuropathol Exp Neurol 1996; 55: 1181–93.

    Article  CAS  PubMed  Google Scholar 

  52. Wilt TJ. Current strategies in the diagnosis and management of lower extremity peripheral vascular disease. J Gen Intern Med 1992; 7: 87–101.

    Article  CAS  PubMed  Google Scholar 

  53. Strandness DE Jr. The use of ultrasound in the evaluation of peripheral vascular disease. Prog Cardiovasc Dis 1978; 20: 403. 22.

    Google Scholar 

  54. Corbally MT, Brennan MF. Noninvasive measurement of regional blood flow in man. Am J Surg 1990; 160: 313–21.

    Article  CAS  PubMed  Google Scholar 

  55. Stern MD, Lappe DL, Bowen PD, Chimosky JE, Holloway GA Jr, Keiser HR, Bowman RL. Continuous measurement of tissue blood flow by laser-Doppler spectroscopy. Am J Physiol 1997; 232: H441–8.

    Google Scholar 

  56. Pabst TS 3rd, Castronuovo JJ Jr, Jackson SD, Schuler JJ, Flanigan DP. Evaluation of the ischemic limb by pressure and flow measurements of the skin microcirculation as determined by laser Doppler velocimetry. Curr Surg 1985; 42: 29–31.

    PubMed  Google Scholar 

  57. Rendell M, Bergman T, O’Donnell G, Drobny E, Borgos J, Bonner RF. Microvascular blood flow, volume and velocity measured by laser Doppler techniques in IDDM. Diabetes 1989; 38: 819–24.

    Article  CAS  PubMed  Google Scholar 

  58. Ubbink DT, Kitslaar PJ, Tordoir JH, Reneman RS, Jacobs MJ. Skin microcirculation in diabetic and non-diabetic patients at different stages of lower limb ischemia. Eur J Vasc Surg 1993; 7: 659–66.

    Article  CAS  PubMed  Google Scholar 

  59. Chittenden SJ, Shukri KS. Microvascular investigations in diabetes mellitus. Postgrad Med J 1993; 69: 419–428.

    Article  CAS  PubMed  Google Scholar 

  60. Ruth B, Schmand J, Abendroth D. Noncontact determination of skin blood flow using the laser speckle method: Application to patients with peripheral occlusive disease (PAOD) and to type I diabetics. Lasers Surg Med 1993; 13: 179–88.

    CAS  Google Scholar 

  61. Ruth B. Blood flow determination by the laser speckle method. Int J Microcirc Clin Exp 1990; 9: 2145.

    Google Scholar 

  62. Nitzan M, Mahler Y, Roberts VC. The transient thermal clearance method for regional blood flow measurement - the influence of tissue heat conduction.

    Google Scholar 

  63. Nitzan M, Goss DE, Chagne D, Roberts VC. Assessment of regional blood flow and specific microvascular resistance in the foot by means of the transient thermal clearance method. Clin Physiol Meas 1988; 9: 347–52.

    Article  CAS  Google Scholar 

  64. Nitzan M, Mahler Y, Lifshitz N. Faster procedure for deriving regional blood flow by the noninvasive transient thermal clearance method. Ann Biomed Eng 1993; 21: 259–62.

    Article  CAS  PubMed  Google Scholar 

  65. Eickhoff JH, Jacobsen E. Correlation of transcutaneous oxygen tension to blood flow in heated skin. Scand J Clin Lab Invest 1980; 40: 761–5.

    Article  CAS  PubMed  Google Scholar 

  66. Roberts DH, Tsao Y, Breckenridge AM. The reproducibility of limb blood flow measurements in human volunteers at rest and after exercise by using mercury-in-silastic strain gauge plethysmography under standardized conditions. Clin Sci 1986; 70: 635–8:

    Google Scholar 

  67. Shraibman IG, Mott D, Naylor GP, Charlesworth D. Comparison of impedance and strain gauge plethysmography in the measurement of blood flow in the lower limb. Br J Surg 1975; 62: 909–12.

    Article  Google Scholar 

  68. Challoner AVJ. Photoelectric plethysmography for estimating blood flow. In: Rolfe P (ed). Noninvasive physiological measurements. Volume 1. Academic Press: London, 1979: 36–60.

    Google Scholar 

  69. Lee BY, Trainor FS, Kauner D, Crisologo JA; Shaw WW, Madden JL. Assessment of the healing potentials of ulcers of the skin by photoplethysmography. Surg Gynecol Obstet 1979; 148: 233–9.

    CAS  PubMed  Google Scholar 

  70. Lee TQ, Barnett SL, Shanfield SL, Anzel SH. Potential application of photoplethysmography technique in evaluating microcirculatory status of STAMP patients: preliminary report. J Rehabil Res Dev 1990; 27: 363–8.

    Article  CAS  PubMed  Google Scholar 

  71. Tubiana-Rufi N, Priollet P, Levy-Marchal C, Czernichow P. Detection by nailfold capillary microscopy of early morphological capillary changes in children with insulin dependent diabetes mellitus. Diabete Metab 1989; 15: 118–22.

    CAS  PubMed  Google Scholar 

  72. Fagrell B. Dynamics of skin microcirculation in humans. J Cardiovasc Pharmacol 1985; 7 Suppl 3: S53–8.

    Google Scholar 

  73. Fagrell B. Advances in microcirculation network evaluation: an update. Int J Microcirc Clin Exp 1995; 15 Suppl 1: 34–40.

    Google Scholar 

  74. Fagrell B, Fronek A, Intaglietta M. A microscope-television system for studying flow velocity in human skin capillaries. Am J Physiol 1977; 233: H318–21.

    CAS  PubMed  Google Scholar 

  75. Osmundson PJ, O’Fallon WM, Zimmerman BR, Kazmier FJ, Langworthy AL, Palambo PJ. Course of peripheral occusive arterial disease in diabetics. Vascular laboratory assessment. Diabetes Care 1990; 13: 143–52

    Article  CAS  PubMed  Google Scholar 

  76. Stoffers HE, Kester AD, Kaiser V, Rinkens PE, Knottnerus J. Diagnostic value of signs and symptoms associated with peripheral arterial occlusive disease seen in general practice: a miltivariable approach. Med Decis Making 1997; 17: 61–70.

    Article  CAS  PubMed  Google Scholar 

  77. Hill M, Reinherz RP, Tisa LM. The significance of noninvasive blood flow studies in the diabetic patient contemplating elective foot surgery. J Foot Ankle Surg 1994; 33: 580–2

    CAS  PubMed  Google Scholar 

  78. Thomas JH, Steers JL, Keushkerian SM, Pierce GE, Iliopolous JI, Hermreck AS. A comparison of diabetics and non-diabetics with threatened limb loss. Am J Surg 1988; 156: 481–3.

    Article  CAS  PubMed  Google Scholar 

  79. Silverman DG, Rubin SM, Reilly CA, Brousseau DA, Norton KJ, Wolf GL. Fluorometric prediction of successful amputation level selection in the ischemic limb. J Rehabil Res Dev 1985; 22: 23–8.

    Article  CAS  PubMed  Google Scholar 

  80. Malone JM, Anderson GG, Lalka SG, Hagaman RM, Henry R, McIntyre KE, Bernhard VM. Prospective comparison of noninvasive techniques for amputation level selection. Am J Surg 1987; 154: 179–84.

    Article  CAS  PubMed  Google Scholar 

  81. Boyko EJ, Ahroni JH, Stensel VL, Smith DG, Davignon DR, Pecorato RE. Predictors of transcutaneous oxygen tension in the lower limbs of diabetic subjects. Diabet Med 1996; 13: 549–54.

    Article  CAS  PubMed  Google Scholar 

  82. Takagi-Smith M, Byrne P, Ameli FM, Provan JL, Jones DP. The measurement of transcutaneous oxygen tension (PTcO2) and its application in the vascular laboratory. Bruit 1984; 8: 213–216.

    Google Scholar 

  83. Rayman G, Williams SA, Spencer PD, Smaje LIT, Wise PH, Tooke JE. Impaired microvascular hyperaemic response to minor skin trauma in type I diabetes. Brit Med J Clin Res Ed 1986; 292: 1295–8.

    Article  CAS  Google Scholar 

  84. Mayrovitz HN, Larsen PB. Functional microcirculatory impairment: A possible source of reduced skin oxygen tension in human diabetes mellitus. Microvasc Res 1996; 52: 115–26.

    Article  CAS  PubMed  Google Scholar 

  85. Caspary L, Abicht J, Creutzig A, Mitzkat HJ, Alexander K. Influence of diabetic neuropathy on skin microcirculation assessed by transcutaneous oxymetry. Vasa 1995; 24: 340–6.

    CAS  PubMed  Google Scholar 

  86. Bunt TJ, Holloway GA.TcPO2 as an accurate predictor of theraphy in limb salvage. Ann Vasc Surg 1996; 10: 224–7.

    Article  CAS  PubMed  Google Scholar 

  87. Ballard JL, Eke CC, Bunt TJ, Killeen JD. A prospective evaluation of transcutaneous oxygen measurements in the management of diabetic foot problems. J Vasc Surg 1995; 22: 485–92.

    Article  CAS  PubMed  Google Scholar 

  88. Padberg FT, Back TL, Thompson PN, Hobson RW 2“d. Transcutaneous oxygen (TcPO2) estimates probability of healing in the ischemic extremity. J Vasc Res 1996; 60: 365–9.

    CAS  Google Scholar 

  89. Pinzur MS, Stuck R, Sage R, Osterman H. Transcutaneous oxygen tension in the dysvascular foot with infection. Foot Ankle 1993; 14: 254–6.

    CAS  PubMed  Google Scholar 

  90. Reiber GE, Pecoraro RE, Koepsell TD. Risk factors for amputation in patients with diabetes mellitus. A case control study. Ann Intern Med 1992; 117: 97–105.

    CAS  PubMed  Google Scholar 

  91. Katsamouris A, Brewster DC, Megerman J, Cina C, Darling RC, Abbott WM. Transcutaneous oxygen tensions in selection of amputation level. Am J Surg 1984; 147: 510–7.

    Article  CAS  PubMed  Google Scholar 

  92. Akbari CM, Gibbons GW, Habershaw GM, LoGerfo FW, Veues A. The effect of arterial reconstruction on the natural history of diabetic neuropathy. Arch Surg 1997; 132: 148–52.

    Article  CAS  PubMed  Google Scholar 

  93. Rampling R, Cruikshank G, Lewis AD, Fitzsimmons SA, Workman P. Direct measurement of pO2 distribution and bioreduction enzymes in human malignant brain tumors. Int J Radiat Oncol Biol Phys 1994; 29: 427–31.

    Article  CAS  PubMed  Google Scholar 

  94. Nordsmark M, Hoyer M, Keller J, Nielsen OS, Jensen OM, Overgaard J. The relationship between tumor oxygenation and cell proliferation in human soft tissue sarcomas. Int J Radiat Oncol Biol Phys 1996; 35: 701–8.

    Article  CAS  PubMed  Google Scholar 

  95. Orchard TJ, Strandness DE Jr. Assessment of peripheral vascular disease in diabetes. Diabetes Care 1993; 16: 1199–209.

    CAS  PubMed  Google Scholar 

  96. Ciavarella A, Silletti A, Mustacchio A, Gargiulo M, Galaverni MC, Stella A, Vannini P. Angiographic evaluation of the anatomic pattern of aterial obstructions in diabetic patients with critical limb ischemia. Diabete Metab 1993; 19: 586–9.

    CAS  PubMed  Google Scholar 

  97. Longmaid HE, Kruskal JB. Imaging infections in diabetic patients. Infect Dis Clin North Am 1995; 9: 163–82.

    PubMed  Google Scholar 

  98. Newman LG. Imaging techniques in the diabetic foot. Clin Podiat Med Surg 1995; 12: 75–86.

    CAS  Google Scholar 

  99. Gold RH, Tong DJF, Crim JR, Seeger LL. Imaging the diabetic foot. Skeletal Radiol 1995; 24: 563–71.

    Article  CAS  PubMed  Google Scholar 

  100. Sartoris DJ. Cross-sectional imaging of the diabetic foot. J Foot Ankle Surg 1994; 33: 531–45.

    CAS  PubMed  Google Scholar 

  101. Chason DP, Fleckenstein JL, Burns DK, Rojas G. Diabetic muscle infarction: radiological evaluation. Skeletal Radiol 1996; 25: 127–32.

    Article  CAS  PubMed  Google Scholar 

  102. Cook TA, Rahim N, Simpson HCR, Galland RB. Magnetic resonance imaging in the management of diabetic foot infection. Brit J Surg 1996; 83: 245–8.

    Article  CAS  PubMed  Google Scholar 

  103. Beltran J, Campanini DS, Knight C, McCalla M. the diabetic foot: magnetic resonance imaging evaluation. Skeletal Radiol 1990; 19: 37–41.

    Article  CAS  PubMed  Google Scholar 

  104. Croll SD, Nicholas GG, Osborne MA, Wasser TE, Jones S. Role of magnetic resonance imaging in the diagnosis of osteomyelitis in diabetic foot infections. J Vasc Surg 1996; 24: 266–70.

    Article  CAS  PubMed  Google Scholar 

  105. Umpierrez GE, Stiles RG, Klinbart J, Krendel DA, Watts NB. Diabetic muscle infarction. Am J Med 1996; 101: 245–50.

    Article  CAS  PubMed  Google Scholar 

  106. Kiers L. Diabetic muscle infarction: magnetic resonance imaging (MRI) avoids the need for biopsy. Muscle Nerve 1995; 18: 129–30.

    CAS  PubMed  Google Scholar 

  107. Kerr TM, Cranley JJ, Johnson JR, Lutter KS, Duldner JE, Sampson MG. Measurement of blood flow rates in the lower extremities with use of a nuclear magnetic resonance based instrument. J Vasc Surg 1991; 14: 649–57.

    Article  CAS  PubMed  Google Scholar 

  108. Anderson CM, Edelman RR, Turski PA. Clinical magnetic resonance angiography. Raven: New York, NY, 1993: 39–40.

    Google Scholar 

  109. Cambria RP, Kaufman JA, L’Italien GJ, Gertler JP, LaMuraglia GM, Brewster DC, Geller S, Atamian S, Waltman AC, Abbott WM. Magnetic resonance angiography in the management of lower extremity arterial occlusive disease: a prospective study. J Vasc Surg 1997; 25: 380–9.

    Article  CAS  PubMed  Google Scholar 

  110. Baum RA, Rutter CM, Sunshine JH, Blebea JS, Blebea J, Carpenter JP, Dickey KW, Quinn SF, Gomes AS, Grist TM, et al. Multicenter trial to evaluate vascular magnetic resonance angiography in the lower extremity. American College of Radiology Rapid Technology Assesment Group. JAMA 1995; 274: 875–80.

    CAS  Google Scholar 

  111. Hartshorne MF, Peters V. Nuclear medicine applications for the diabetic foot. Clin Podiatr Med Surg 1987; 4: 361–75.

    CAS  PubMed  Google Scholar 

  112. Thakur ML, Segal AW, Louis L, Welch MJ, Hopkins J, Peters Ti. Indium-111 labelled cellular blood components: mechanism of labelling and intercellular location in human neutrophils. J Nucl Med 1977; 18: 1022–6.

    CAS  PubMed  Google Scholar 

  113. Newman LG, Waller J, Palestro CJ, Hermann G, Klein MJ, Schwartz M, Harrington E, Harrington M, Roman SH, Green SA. Leukocyte scanning with “In is superior to magnetic resonance imaging in diagnosis of clinically unsuspected osteomyelitis in diabetic foot. Diabetes Care 1992; 15: 1527–30.

    Article  CAS  PubMed  Google Scholar 

  114. Oyen WJG, Netten PM, Lemmens JAM, Claessens RAMJ, Lutterman JA, van der Vliet JA, Goris RJA, van der Meer JWM, Corstens FHM. Evaluation of infectious diabetic foot complications with indium-111-labelled human nonspecific immunoglobulin G. J Nucl Med 1992; 7: 1330–6.

    Google Scholar 

  115. Dominguez-Gadea L, Martin-Curto LM, de la Calle H, Crespo A. Diabetic foot infections: scintigraphic evaluation with 99mTc-labelled anti-granulocyte antibodies. Nucl Med Commun 1993; 14: 212–8.

    Article  CAS  PubMed  Google Scholar 

  116. Vaidyanathan G, Zalutsky MR. Fluorine-18 labeled chemotactic peptides: a potential approach for the PET imaging of bacterial infection. Nucl Med Biol 1995; 22: 759–64.

    Article  CAS  PubMed  Google Scholar 

  117. Babich JW, Graham W, Barrow SA, Fischman AJ. Comparison of the infection imaging properties of a 99mTc labeled chemotactic peptide with“In IgG. Nucl Med Biol 1995; 22: 643–8.

    Article  CAS  PubMed  Google Scholar 

  118. Fischman AI, Babich JW, Rubin RH. Infection imaging with technetium-99m-labeled chemotactic peptide analogs. Semin Nucl Med 1994; 24: 154–68.

    Article  CAS  PubMed  Google Scholar 

  119. Siegel ME, Williams GM, Giargiana FA, Wagner HN. A useful, objective criterion for determining the healing potential of an ischemic ulcer. J Nucl Med 1975; 16: 993–5.

    CAS  PubMed  Google Scholar 

  120. Siegel ME, Giargiana FA, Rhodes BA, Williams GM, Wagner HN Jr. Perfusion of ischemic ulcers of the extremity. A prognostic indicator of healing. Arch Surg 1975; 110: 265–8.

    Article  CAS  PubMed  Google Scholar 

  121. Moriarty KT, Perkins AC, Robinson AM, Wastie ML, Tattersal RB. Investigating the capillary circulation of the foot with 99mTc-macroaggregated albumin: A prospective study in patients with diabetes and foot ulceration. Diabetic Med 1994; 11: 22–7.

    Article  CAS  PubMed  Google Scholar 

  122. Sturrock NDC, Perkins AC, Wastie ML, Blackhand KR, Moriarty KT, A reproducibility study of technetium-99m macroaggregated albumin foot perfusion imaging in patients with diabetes mellitus. Diabetic Med 1995; 12: 445–8.

    Article  CAS  PubMed  Google Scholar 

  123. Holstein P. Skin perfusion pressure measured by radioisotope washout for prediction of wound healing in lower limb amputation for arterial occlusive disease. Acta Orthop Scand Suppl 1985, 213: 1–47.

    CAS  PubMed  Google Scholar 

  124. Lin WY, Kao CH, Hsu CY, Liao SQ, Wang Si, Yea SH. Evaluation of tissue perfusion by the Xe-133 washout method in lower limbs of patients with noninsulin-dependent diabetes mellitus. Clin Nucl Med 1995; 20: 449–52.

    Article  CAS  PubMed  Google Scholar 

  125. Archer CM, Edwards B, Powell NA. Radiopharmaceuticals for imaging hypoxia. In: Mather PJ (ed). Current directions in radiopharmaceutical research and development. Kluwer: Dordrecht, 1996: 81–8.

    Chapter  Google Scholar 

  126. Nunn A, Linder K, Strauss HW. Nitroimidazoles and imaging hypoxia. Eur J Nuc Med 1995; 22: 265–280.

    Article  CAS  Google Scholar 

  127. Archer CM, Edwards B, Kelly JD, King AC, Burke JF, Riley ALM. Technetium labelled agents for imaging tissue hypoxia in vivo. In: Nicolini G, Bandoli G, Mazzi U (eds). Technetium and rhenium in chemistry and nuclear medicine. SCEditoriali: Padova, 1995.

    Google Scholar 

  128. Biaglow JE, Varnes ME, Roizen-Towle L, Clark EP, Epp ER, Astor MB, Hall EJ. Biochemistry of reduction of nitroheterocycles. Biochem Pharmacol 1986; 35: 77–90.

    Article  CAS  PubMed  Google Scholar 

  129. Mannan RH, Somayaji VV, Lee J, Mercer JR, Chapman JD, Wiebe LI. Radioiodinated 1-(5-iodo-5deoxy-beta-D-arabinofuranosyl)-2-nitroimidazole (iodoazomycin arabinoside: IAZA): a novel marker of tissue hypoxia. J Nucl Med 1991; 32: 1764–70.

    CAS  PubMed  Google Scholar 

  130. Rasey JS, Nelson NJ, Chin L, Evans ML, Grunbaum Z. Characteristics of the binding of labeled fluoromisonidazole in cells in vitro. Radiat Res 1990; 122: 301–8.

    Article  CAS  PubMed  Google Scholar 

  131. Rasey JS, Grunbaum Z, Magee S, Nelson NJ, Olive PL, Durand RE, Krohn KA. Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res 1987; 111: 292–304.

    Article  CAS  PubMed  Google Scholar 

  132. Lythgoe MF, Williams SR, Wiebe LI, McEwan AJB, Gordon I. Autoradiographic imaging of cerebral ischaemia using a combination of blood flow and hypoxic markers in an animal model. Eur J Nucl Med 1997; 24: 16–20.

    Article  CAS  PubMed  Google Scholar 

  133. Moore RB, Chapman JD, Mercer JR, Mannan RH, Wiebe LI, McEwan AJ, McPhee MS. Measurement of PDT-induced hypoxia in Dunning prostate tumors by iodine-123-iodoazomycin arabinoside. J Nucl Med 1993; 34: 405–11.

    CAS  PubMed  Google Scholar 

  134. Yang DJ, Wallace S, Cherif A, Li C, Gretzer MB, Kim EE, Podoloff DA. Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia. Radiology 1995; 194: 795–800.

    CAS  PubMed  Google Scholar 

  135. Rasey JS, Koh WJ, Grierson JR, Grunbaum Z, Krohn KA. Radiolabelled fluoromisonidazole as an imaging agent for tumor hypoxia. Int J Radiat Oncol Biol Phys 1989; 17: 985–91.

    Article  CAS  PubMed  Google Scholar 

  136. Caldwell JH, Revenaugh JR, Martin GV, Johnson PM, Rasey JS, Krohn KA. Comparison of fluorine18-fluorodeoxyglucose and tritiated fluoromisonidazole uptake during low-flow ischemia. J Nucl Med 1995; 36: 1633–8.

    CAS  PubMed  Google Scholar 

  137. Groshar D, McEwan AJ, Parliament MB, Urtasun RC, Golberg LE, Hoskinson M, Mercer JR, Mannan RH, Wiebe LI, Chapman JD. Imaging tumor hypoxia and tumor perfusion. J Nucl Med 1993; 34: 885–8.

    CAS  PubMed  Google Scholar 

  138. Parliament MB, Chapman JD, Urtasun RC, McEwan AJ, Golberg L, Mercer JR, Mannan RH, Wiebe LI. Non-invasive assessment of human tumour hypoxia with 123I-iodoazomycin arabinoside: preliminary report of a clinical study. Br J Cancer 1992; 65: 90–5.

    Article  CAS  PubMed  Google Scholar 

  139. Valk PE, Mathis CA, Prados MD, Gilbert JC, Budinger TF. Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med 1992; 33: 2133–7.

    CAS  PubMed  Google Scholar 

  140. Koh WJ, Rasey JS, Evans ML, Grierson JR, Lewellen TK, Graham MM, Krohn KA, Griffin TW. Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int J Radiat Oncol Biol Phys 1992; 22: 199–212.

    Article  CAS  PubMed  Google Scholar 

  141. Liu RS, Chu LS, Yen SH, Chang CP, Chou KL, Wu LC, Chang CW, Lui MT, Chen KY, Yeh SH. Detection of anaerobic odontogenic infections by fluorine-18 fluoromisonidazole. Eur J Nucl Med 1996; 23: 1384–7.

    Article  CAS  PubMed  Google Scholar 

  142. Al Arafaj A, Ryan EA, Hutchison K, Mannan RH, Mercer J, Wiebe LI, McEwan AJ. An evaluation of iodine-123 iodoazomycinarabinoside as a marker of localized tissue hypoxia in patients with diabetes mellitus. Eur J Nucl Med 1994; 21: 1338–42.

    Article  Google Scholar 

  143. Liu RS, Chu LS, Chang CP, Hsiau HY, Chou KL, Chang CW, Yeh SH. Assessment of the outcome of diabetic foot lesions by [F-18]Fluoromisonidazole PET scan. J Nucl Med Suppl 1996; 37: 27 p.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mercer, J.R., Liu, H. (1999). The Evaluation of Hypoxia in Diabetes. In: Machulla, HJ. (eds) Imaging of Hypoxia. Developments in Nuclear Medicine, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1828-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1828-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5157-8

  • Online ISBN: 978-94-017-1828-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics