Skip to main content

The Composition of Groundwater in the Continental Crystalline Crust

  • Chapter
Hydrogeology of Crystalline Rocks

Part of the book series: Water Science and Technology Library ((WSTL,volume 34))

Abstract

The composition of water stored in the crystalline rocks (basement) of the upper continental crust has in general four components: i) a surface water component derived from rain, snow and other precipitation, ii) a seawater component derived from modern or fossil seawater, iii) an imported component from ongoing magmatic or metamorphic reactions elsewhere in the crust, and iv) a contribution from the reactions between water and the local rock matrix.

Continental crust consists predominantly of granitic and gneissic rocks and water found in the crust reflects the granitic mineralogy of plagioclase, K-feldspar, quartz and mica (± hornblende). Less abundant minerals can be important for deviations from “normal granite water” and also for trace element patterns of groundwater in the basement.

Water is found in cavities, fractures and other water conducting features forming an interconnected pore space that allows for flow and mixing. Flow velocities rapidly decrease with depth and stagnant, density stratified water dominates large areas of the continental basement.

Dissolution rates are very slow for all major rock forming minerals of the granitic basement at the temperatures prevailing in the upper few km of the crust. Water never reaches equilibrium with any of the “granite minerals” with the exception of quartz which rapidly reaches saturation as a result of feldspar and mica dissolution. Dissolution of plagioclase and biotite and precipitation of related secondary minerals as coatings on fracture surfaces control the composition of groundwater in the basement.

Feldspar and mica hydrolysis tends to consume acidity and increases the pH. All basement waters world wide are typically low to moderate pH waters even in brines with very high TDS. This suggests that a mechanism of dessication is primarly responsible for the high concentration of solutes in deep groundwater of the crust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albu, M., Banks, D., and Nash, H. (1997) Mineral and thermal groundwater resources. Chapman & Hall, London, 447 p.

    Book  Google Scholar 

  • Althaus, E., Bauer, F., and Karotke, H. (1985) Bericht des Arbeitskreises Geochemie. In: Zwischenbericht über “Erweiterte Zirkulation wässriger Fluide im Hot Dry Rock-System (Gneisgebirge) der Bohrung Urach 3” (unveröffentlicht)., 59–61. Stadtwerke Bad Urach: Bad Urach.

    Google Scholar 

  • Banks, S. and Banks, D., editors. (1993) Hydrogeology of Hard Rocks, Memoirs of the XXIVth Congress International Association of Hydro geologists 28th June–2nd July 1993, Ås (Oslo), Norway, NGU, Geological Survey of Norway, Trondheim, 1205 p.

    Google Scholar 

  • Behr, H. (1989) Die geologische Aktivität von Krustenfluiden. Nds. Akad. Geowiss. Veröfftl., 1, 7–43.

    Google Scholar 

  • Berman, R.G. (1988) Internally-Consistent Thermodynamic Data for Minerals in the System: Na2O- K2O- CaO- MgO- FeO- Fe2O3- Al2O3-SiO2- TiO2- H2O- CO2, Journal of Petrology, 29, 445–522.

    Article  Google Scholar 

  • Bowers, T. S., Jackson, K. J., and Helgeson, H. C. (1984) Equilibrium Activity Diagrams for Coexisting Minerals and Aqueous Solutions at Pressures and Temperatures to 5 kb and 600°C. Springer: Berlin. 397 p.

    Google Scholar 

  • Bucher, K. and Stober, I. (1999) Mass balance versus equilibrium control of groundwater composition in crystalline basement, J. Conference Abstracts, 4, 586.

    Google Scholar 

  • Carlé, W. (1975) Die Mineral- und Thermalwässer von Mitteleuropa. Wissenschaftliche Verlagsgesellschaft, Stuttgart, 419 p.

    Google Scholar 

  • Carmichael, R.S., (1989) Practical handbook of physical properties of rocks and minerals, CRC Press: Boca Raton, 674 p.

    Google Scholar 

  • Chester, F.M. (1995) A rheologic model for wet crust applied to strike-slip faults, Journal of geophysical Research, 100, 13033–13044.

    Article  Google Scholar 

  • Dai, J., Song, Y., Dai, Ch. S., and Wang, D.-R. (1996) Geochemistry and accumulation of carbon dioxide gases in China. American Association of Petroleum Geologists Bulletin, 80, 1615–1626.

    Google Scholar 

  • Deer, W.A., Howie, R.A., and Zussmann, J. (1992) An introduction to the rock forming minerals. 2nd ed. Longman, Harlow, UK. 696 p.

    Google Scholar 

  • Edmunds, W. M., Kay, R. L. F., Miles, D. L., and Cook, J. M. (1987) The origin of saline groundwaters in the Carnmenellis granites, Cornwall (U.K.): Further evidence from minor and trace elements. In: Saline Water And Gases In Crystalline Rocks, 127–143. Fritz, P. and Frape, S. K. (editors), Geological Association of Canada Special Paper, 33. The Runge Press Limited: Ottawa.

    Google Scholar 

  • Etheridge, M.A., Wall, V.J., and Vernon, R.H. (1983) The role of the fluid phase during regional metamorphism and deformation, J. Metamorphic Geology, 1, 205–226.

    Article  Google Scholar 

  • Frape, S. K., and Fritz, P. (1987) Geochemical trends for groundwaters from the Canadian shield. In: Saline water and gases in crystalline rocks, 19–38.

    Google Scholar 

  • Fritz, P. and Frape, S. K. (editors), Geological Association of Canada Special Paper, 33. The Runge Press Limited: Ottawa.

    Google Scholar 

  • Fritz, P., and Frape, S. K., editors, (1987) Saline Water And Gases In Crystalline Rocks, Geological Association of Canada Special Paper, 33. The Runge Press Limited, Ottawa. 215 p.

    Google Scholar 

  • Fritz, P., Frape, S. K., Drimmie, J. R., Appleyard, E. C. and Hattori, K. (1994) Sulfate in brines in the crystalline rocks of the Canadian Shield, Geochimica et Cosmochimica Acta, 58, 57–65.

    Article  Google Scholar 

  • Frost, B.R., and Bucher, K. (1994) Is water responsible for geophysical anomalies in the deep continental crust? A petrological perspective, Tectonophysics, 231, 293–309.

    Article  Google Scholar 

  • Fyfe, W. S. (1987) The fluid inventory of the crust and its influence on crustal dynamics. In: Saline Water And Gases In Crystalline Rocks, l-4.

    Google Scholar 

  • Fritz, P. and Frape, S. K. (editors), Geological Association of Canada Special Paper, 33. The Runge Press Limited: Ottawa.

    Google Scholar 

  • Fyfe, W. S., Price, N. J., and Thompson, A. B. (1978) Fluids in the earth’s crust: their significance in metamorphic, tectonic and chemical transport processes. Elsevier: Amsterdam. 383 p.

    Google Scholar 

  • Gascoyne, M., Davison, C. C., Ross, J. D., and Pearson, R. (1987) Saline groundwaters and brines in plutons in the Canadian Shield. In: Saline Water And Gases In Crystalline Rocks, 53–68. Fritz, P. and Frape, S. K. (editors), Geological Association of Canada Special Paper, 33. The Runge Press Limited: Ottawa.

    Google Scholar 

  • Gascoyne, M., and Kamineni, D. C. (1993) The hydrogeochemistry of fractured plutonic rocks in the canadian shield. In: Hydrogeology of Hard Rocks, 440–449. Banks, S. B. and Banks, D. (editors), Geological Survey of Norway: Trondheim.

    Google Scholar 

  • Gascoyne, M., and Kamineni, D.C. (1994) The hydrogeochemistry of fractured plutonic rocks in the Canadian shield, Applied Hydrogeology, 2 /94, 43–49.

    Article  Google Scholar 

  • Griesshaber-Schmal, E., (1990) Helium and Carbon Isotope Systematics in Groundwaters from W.Germany and E.Africa. University of Cambridge, Dissertation (unpublished), 211 p.

    Google Scholar 

  • Gustayson, G., and Krasny, J. (1993) Crystalline rock aquifers: their occurrence, use and importance. In: Hydrogeology of Hard Rocks, 3–20. Banks, S. B. and Banks, D. (editors), Geological Survey of Norway: Trondheim.

    Google Scholar 

  • Helgeson, H.C., Kirkham, D.H., and Flowers, G.C. (1981) Theoretical prediction of the thermodynamic behaviour of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 kb, American Journal of Science, 281, 1249–1516.

    Article  Google Scholar 

  • Jenkner, B., Jenkner, I., Klein, H., Schädel, K., and Stober, I. (1986) Geothermievorbohrungen im Mittleren Schwarzwald für das Kontinentale Tiefbohrprogramm der Bundesrepublik Deutschland, Abschlußbericht 1986 des Geologischen Landesamtes Baden-Württemberg vom 15. 12. 1986 (unpubl.), 74 p.

    Google Scholar 

  • Kamineni, Ch.D. (1987) Halogen-bearing minerals in plutonic rocks: A possible source of chlorine in saline groundwater in the Canadian Shield. In: Saline Water And Gases In Crystalline Rocks, 69–79. Fritz, P. and Frape, S. K. (editors), Geological Association of Canada Special Paper, 33. The Runge Press Limited: Ottawa.

    Google Scholar 

  • Kerrick, D.M., McKibben, M.A., Seward, T.M., and Caldeira, K. (1994) Convective hydrothermal CO2 emission from high heat flow regions. Chemical Geology, 121, 285–293.

    Article  Google Scholar 

  • Kozlovsky, Ye.A. (1984) The world’s deepest well, Scientific American, 251, 106–112.

    Article  Google Scholar 

  • Lasaga, A.C., (1984) Chemical kinetics of water-rock interactions, Journal of Geophysical Research, 89, 4009–4025.

    Article  Google Scholar 

  • Liegl, R., Stober, I., and Bucher, K. (1999) Experimental water-rock reaction of Black Forest gneiss and granite, Journal of Conference Abstracts, 4, 590.

    Google Scholar 

  • Lodemann, M., Fritz, P., Wolf, M., Ivanovich, M., Hansen, B. T., and Nolte, E. (1998) On the origin of saline fluids in the KTB (Continental Deep Project of Germany), Applied Geochemistry, 13, 651–672.

    Article  Google Scholar 

  • Markl, G., and Bucher, K. (1998) Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks, Nature, 391, 781–783.

    Article  Google Scholar 

  • May, F., Hoernes, S., and Neugebauer, H. J. (1996) Genesis and distribution of mineral waters as a consequence of recent lithospheric dynamics: the Rhenish Massif, Central Europe. Geologische Rundschau, 85, 782–799.

    Article  Google Scholar 

  • Mazurek, M. (this volume) Geological and hydraulic properties of water-conducting features in crystalline rocks. In: Hydrogeology of Crystalline Rocks. Stober, I. and Bucher, K. (editors), Kluwer: Amsterdam.

    Google Scholar 

  • Mazurek, M., Gautschi, A., Smith, P. A. and Zuidema, P. (this volume) On the water-conducting features in the Swiss concept for the disposal of high-level radioactive waste. In: Stober, I. and Bucher, K., (editors), Hydrogeology of Crystalline Rocks,Kluwer, Amsterdam.

    Google Scholar 

  • Michel, G. (1997) Mineral-und Thermalwässer — Allgemeine Balneogeologie. In: Lehrbuch der Hydrogeologie, 7, Mattheß, G. (editor), Gebr. — Bornträger, Berlin/Stuttgart, 256 p.

    Google Scholar 

  • Möller et al. (1997) Paleo-and recent fluids in the upper continental crust — Results from the German Continental deep drilling Program (KTB), Journal of geophysical Research, 102, 18245–18256.

    Article  Google Scholar 

  • Möller, P. (this volume) Rare earth elements and yttrium as geochemical indicators of the source of mineral and thermal waters. In: Hydrogeology of Crystalline Rocks. Stober, I. and Bucher, K. (editors), Kluwer: Amsterdam.

    Google Scholar 

  • Munch, H.G. (1981) Zur Geologie des Geothermik-Pilot-Projektes Bühl, Aufschluss, 32, 335–344.

    Google Scholar 

  • Muffler, L.I.P., and White, D.E. (1968) The origin of CO2 in the Salton Sea geothermal system, south eastern California, U.S.A. 23Int. Geol. Congr. Prague, 17, 185–192.

    Google Scholar 

  • Newton, R.C. (1989) Metamorphic fluids in the deep crust, Annual Reviews of Earth and Planetary Science, 17, 385–412.

    Article  Google Scholar 

  • Newton, R.C., Aranovich, L., Hansen, E. C., and Vandenheuvel, B. A. (1998) Hypersaline fluids in precambrian deep-crustal metamorphism, Precambrian Research, 91, 41–63.

    Article  Google Scholar 

  • Nordstrom, D.K., Andrews, J.N., Carlsson, L., Fontes, J.-C., Fritz, P., Moser H., and Olsson, T. (1985) Hydrogeological and Hydrogeochemical Investigations in Boreholes — Final report of the phase I geochemical investigations of the Stripa groundwaters, Technical Report STRIPA Project, Stockholm, 85–06.

    Google Scholar 

  • Nordstrom, D. K. et al. (1979) A comparison of computerized chemical models for equilibrium calculations in aqueous systems. In: Chemical modelling in aqueous systems, speciation, sorption, solubility, and kinetics. S.93, 857–892, Jenne, E. A. (editor), American Chemical Society.

    Chapter  Google Scholar 

  • Person, M., and Garven, G. (1992) Hydrologic constraints on petroleum generation within continental rift basins: Theory and application to the Rhine Graben, American Association of Petroleum Geologists Bulletin, 76, 468–488.

    Google Scholar 

  • Rutter, E. H., and Brodie, K. H. (1992) Rheology of the lower crust. In: Continental Lower Crust. 201–267. Fountain, D. M., Arculus, R., and Kay, R. W. (editors), Elsevier: Amsterdam.

    Google Scholar 

  • Schreiner, A. (1991) Geologie und Landschaft. In: Das Markgrafler Land: Entwicklung und Nutzung einer Landschaft, 11–24. Hoppe, A. (editor), Naturforschende Gesellschaft Freiburg i.Br., 81.

    Google Scholar 

  • Stanley, W.D, Mooney, W.D., and Fuis, G.S. (1990) Deep crustal structure of the Cascade Range and surrounding regions from seismic refraction and magnetotelluric data, Journal of Geophysical Research, 95, 19419–19438.

    Article  Google Scholar 

  • Stober, I. (1986) Strömungsverhalten in Festgesteinsaquiferen mit Hilfe von Pump-und Injektionsversuchen. Geologisches Jahrbuch, Reihe C, H. 42, 204 p.

    Google Scholar 

  • Stober, I. (1995) Die Wasserführung des kristallinen Grundgebirges, Enke-Verlag, Stuttgart, 191 pp.

    Google Scholar 

  • Stober, I. (1996) Hydrogeological Investigations in Crystalline Rocks of the Black Forest, Germany, TERRA Nova, 8, 255–258.

    Article  Google Scholar 

  • Stober, I., and Bucher, K. (this volume) Hydraulic Properties of the upper Continental Crust: data from the Urach 3 geothermal well. In: Hydrogeology of Crystalline Rocks. Stober, I. and Bucher, K. (editors), Kluwer: Amsterdam.

    Google Scholar 

  • Stober, I., and Bucher, K. (1999) Deep groundwater in the crystalline basement of the Black Forest region, Applied Geochemistry, 14, 237–254.

    Article  Google Scholar 

  • Touret, J. (1986) Fluid inclusions in rocks from the lower continental crust. In: The nature of the lower continental crust. 161–172. Dawson, J. B., Carswell, D. A., Hall, J., and Wedepohl, K. H. (editors), Geological Society of London Special Publication 81. London: United Kingdom.

    Google Scholar 

  • Trommsdorff, V., Skippen, G., and Ulmer, P. (1985) Halite and sylvite as solid inclusions in high-grade metamorphic rocks, Contributions to Mineralogy and Petrology, 24–29.

    Google Scholar 

  • Wickham, S. M. (1992) Fluids in the deep crust — petrological and isotopic evidence. In: Continental Lower Crust. 391–421. Fountain, D. M., Arculus, R., and Kay, R. W. (editors), Elsevier: Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bucher, K., Stober, I. (2000). The Composition of Groundwater in the Continental Crystalline Crust. In: Stober, I., Bucher, K. (eds) Hydrogeology of Crystalline Rocks. Water Science and Technology Library, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1816-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1816-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5368-8

  • Online ISBN: 978-94-017-1816-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics