Skip to main content

Hydraulic Properties of the Upper Continental Crust: data from the Urach 3 geothermal well

  • Chapter
Hydrogeology of Crystalline Rocks

Part of the book series: Water Science and Technology Library ((WSTL,volume 34))

Abstract

The 4500m deep research borehole at Urach (South Germany) has been extensively used for hydraulic testing of the crystalline basement. The data permit a general interpretation of the hydraulic properties of crystalline continental upper crust. The typical granitic and gneissic basement contains an interconnected fluid-filled fracture system and behaves hydraulically like a confined fractured aquifer. Thus standard hydraulic well-tests can be used in the basement. The conclusions are based on data from the central part of the upper crust and are, therefore, believed to be characteristic and significant for the brittle upper continental crust in general.

The performed tests (including a > 500 hours long-term injection test) revealed a hydraulically effective porosity of the basement of typically 0.5% and an average permeability of about 10−9 m/s. NaCl-rich brine with > 100 g/kg total dissolved solids (TDS) occupies the fracture pore space at depth. The basement can be best described as a homogeneous, isotropic aquifer and this characteristic hydraulic behavior persists to at least several hundred meters around the borehole. No evidence for hydraulic infiltration or the existence of impervious boundaries was found in the test data. The homogeneity of the aquifer, together with the highly saline water present in an interconnected system of abundant fractures appear to be characteristic of continental upper crust in general. Similar general aquifer properties were found in other deep boreholes into the crystalline basement of the Black Forest area, in the “Hot-Dry-Rock” well of Soultzsous-Forêts (France), NAGRA deep wells (N-Switzerland), KTB wells (SE-Germany) and the Kola well (Kola, Russia).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Althaus, E. (1982) Geochemical problems in fluid-rock interaction. In: The Urach Geothermal Project, 123–133. Haenel, R. (editor) Schweizerbart’sche Verlagsbuchhandlung: Stuttgart.

    Google Scholar 

  • Bartelsen, H., Lueschen, E., Krey, Th., Meissner, R., Schmoll, H., and Walter, Ch. (1982) The combined seismic reflection-refraction investigation of the Urach geothermal anomaly. In: The Urach Geothermal Project, 247–263. Haenel, R. (editor) Schweizerbart’sche Verlagsbuchhandlung: Stuttgart.

    Google Scholar 

  • Bauer, F. (1987) Die Kristallinen Gesteine aus der Bohrlochvertiefung Urach 3 und ihre fluiden Einschlüsse: Eine Interpretation der hydrothermalen Überprägung anhand der Fluid-Daten aus Einschlußmessungen, Dissertation at Universität (T.H.) Fridericiana Karlsruhe, 118

    Google Scholar 

  • Bertleff, B., Joachim, H., Koziorowski, G., Leiber, J., Ohmert, W., Prestel, R., Stober, L, Strayle, G., Villinger, E. and Werner, J. (1988) Ergebnisse der Hydrogeothermiebohrungen in Baden-Württemberg, jh. geol. Landesamt Baden-Württemberg, 30, 27–116.

    Google Scholar 

  • Carlslaw, H. and Jaeger, J.C. (1959) Conduction of heat in solids, Clarendon Press, Oxford, 510 p.

    Google Scholar 

  • Chester, F.M. (1995) A rheologic model for wet crust applied to strike-slip faults, Journal of geophysical Research, 100, 13033–13044.

    Article  Google Scholar 

  • Dietrich, H.-G. (1982) Geological results of the Urach 3 Borehole and the Correlation with other Boreholes. In: The Urach Geothermal Project. Haenel, R. (editor) Schweizerbart’sche Verlagsbuchhandlung: Stuttgart.

    Google Scholar 

  • Edmunds, W. M. and Savage, D. (1991) Geochemical characteristics of groundwater in granites and related crystalline rocks. In: Applied Groundwater Hydrology, a British Perspective, 199–216. Downing, R. A. and Wilkinson, W. B. (editors) Clarendon Press: Oxford/U.K.

    Google Scholar 

  • Emmermann, R., Altbaus, E., Giese, P. and Stöckhert, B. (1995) KTB Hauptbohrung Results of Geoscientific Investigation in the KTB Field Laborarory, Final Report: 0–9101 m, KTB Report 95–2, Schweizerbart’sche Verl. Stuttgart.

    Google Scholar 

  • Emmermann, R. and Lauterjung, J. (1997) The German Continental Deep Drilling Program KTB, Journal of geophysical Research, 102, 18179–18201.

    Article  Google Scholar 

  • Frape, S. K. and Fritz, P. (1987) Geochemical trends for groundwaters from the Canadian shield. In: Saline water and gases in crystalline rocks, 19–38. Fritz, P. and Frape, S. K. (editors) The Runge Press Limited: Ottawa.

    Google Scholar 

  • Frost, B.R. and Bucher, K. (1994) Is water responsible for geophysical anomalies in the deep continental crust? A petrological perspective, Tectonophysics, 231, 293–309.

    Article  Google Scholar 

  • Fuchs, K. (1986) Intraplate seismisity induced by stress concentration at crustal heterogeneities–the Hohenzollern Graben, a case history. In: The nature of the lower continental crust, 119–132. Dawson, J. B., Carlswell, D. A., Hall, J., and Wedepohl, K. H. (editors) Geological Society Special Publication.

    Google Scholar 

  • Gascoyne, M. and Kamineni, D. C. (1993) The hydrogeochemistry of fractured plutonic rocks in the canadian shield. In: Hydrogeology of Hard Rocks, 440449. Banks, S. B. and Banks, D. (editors) Geol. Survey of Norway: Trondheim.

    Google Scholar 

  • Gringarten, A.C. and Ramey, H.J. (1974) Unsteady-state pressure distributions created by a well with a single horizontal fracture, partial penetration, or restricted entry, Soc. Petrol. Engineers Journ., 413–426.

    Google Scholar 

  • Gustayson, G. and Krasny, J. (1993) Crystalline rock aquifers: their occurrence, use and importance. In: Hydrogeology of Hard Rocks, 3–20. Banks, S. B. and Banks, D. (editors) Geological Survey of Norway: Trondheim.

    Google Scholar 

  • Haak, V. and Hutton, R. (1986) Electrical resistivity in continental lower crust. In: The nature of the lower continental crust, 35–49. Dawson, J. B., Carswell, D. A., Hall, J., and Wedepohl, K. (editors) Geological Society Special Publication.

    Google Scholar 

  • Jones, A. G. (1992) Electrical properties of the lower continental crust. In: Continental Lower Crust. Fountain, D. M., Arculus, R., and Kay, R. W. (editors) Elsevier: Amsterdam.

    Google Scholar 

  • Jones, T. and Nur, A. (1982) Seismic velocity and anisotropy in mylonites and the reflectivity of deep crustal fault zones, Geology, 10, 260–263.

    Article  Google Scholar 

  • Jones, T. and Nur, A. (1984) The nature of scismic reflections from deep crustal fault zones, Journal of geophysical Research, 89b, 3153–3173.

    Article  Google Scholar 

  • Kozlovsky, Ye.A. (1984) The world’s deepest well, Scientific American, 251, 106–112.

    Article  Google Scholar 

  • Kruseman, G.P. and De Ridder, N.A. (1991) Analysis and Evaluation of Pumping Test Data, ILRI publication 47, 2nd ed. Wageningen/The Netherlands, 377

    Google Scholar 

  • Mair, J.A. and Green, A.G. (1981) High-resolution seismic reflection profiles reveal fracture zones within a ‘homogeneous’ granite batholith, Nature, 294, 439–442.

    Article  Google Scholar 

  • Markl, G. and Bucher, K. (1998) Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks, Nature, 391, 781–783.

    Article  Google Scholar 

  • Meissner, R. (1986) Twenty years of deep seismic reflection profiling in Germany–a contribution to our knowledge of the nature of the lower Variscan crust. In: The nature of the lower continental crust, 1–10. Dawson, J. B., Carlswell, D. A., Hall, J., and Wedepohl, K. H. (editors) Geological Society Special Publication.

    Google Scholar 

  • Pauwels, H., Fouillac, C. and Fouillac, A.-M. (1993) Chemistry and isotopes of deep geothermal saline fluids in the Upper Rhine Graben: Origin of compounds and water-rock interactions, Geochimica et Cosmochimica Acta, 57, 2737–2749.

    Article  Google Scholar 

  • Schädel, K. and Stober, I. (1984a) Auswertung der Auffüllversuche in der Forschungsbohrung Urach 3, Jh. geol. Landesamt Baden-Württemb. 26, 27–34.

    Google Scholar 

  • Schädel, K. and Stober, I. (1984b) Die Wärmeanomalie Urach aus geologischer Sicht, Jh. geol. Landesamt Baden-Württemberg, 26, 19–25.

    Google Scholar 

  • Schädel, K. and Stober, I. (1984c) Gibt es thermische Stabilitätsgrenzen in der Erdkruste?, Jh geol.Landesamtes Baden-Württemberg, 26, 7–18.

    Google Scholar 

  • Smithson, S. B., Brewer, J., Kaufman, J. S., Oliver, J. and Hurich, C. (1979) Structure of the Laramide Wind River Uplift, Wyoming, from COCORP deep reflection data and from gravity data, Journal of geophysical Research, 84, 5955–5972.

    Article  Google Scholar 

  • Stenger, R. (1982) Petrology and Geochemistry of the Basement Rocks of the Research Drilling Projekt Urach 3. In: The Urach Geothermal Project, 41–48. Haenel, R. (editor) Schweizerbart’sche Verlagsbuchhandlung: Stuttgart.

    Google Scholar 

  • Stober, I. (1986) Strömungsverhalten in Festgesteinsaquiferen mit Hilfe von Pump-und Injektionsversuchen, Geologisches Jahrbuch, Reihe C, 204 p.

    Google Scholar 

  • Stober, I. (1995) Die Wasserführung des kristallinen Grundgebirges, Enke-Verlag, Stuttgart, 191 p.

    Google Scholar 

  • Stober, I. (1996) Researchers Study Conductivity of Crystalline Rock in Proposed Radioactive Waste Site, EOS, Trans. American Geophysical Union, 77, 93–94.

    Article  Google Scholar 

  • Stober, I. and Bucher, K. (1999a) Deep groundwater in the crystalline basement of the Black Forest region, Applied Geochemistry, 14, 237–254.

    Article  Google Scholar 

  • Stober, I. and Bucher, K. (1999b) On the origin of salinity of deep groundwater in crystalline rocks, Journal of Conference Abstracts, 586–587.

    Google Scholar 

  • Warner, M. and McGeary, S. (1987) Seismic reflection coefficients from mantle fault zones, Geophysical Journal of the Royal Astronomical Society, 89, 223–230.

    Article  Google Scholar 

  • Wintsch, R. P., Christoffersen, R. and Kronenberg, A. K. (1995) Fluid-rock reaction weakening of fault zones, Journal of geophysical Research, 100, 13021–13032.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stober, I., Bucher, K. (2000). Hydraulic Properties of the Upper Continental Crust: data from the Urach 3 geothermal well. In: Stober, I., Bucher, K. (eds) Hydrogeology of Crystalline Rocks. Water Science and Technology Library, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1816-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1816-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5368-8

  • Online ISBN: 978-94-017-1816-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics