Skip to main content

Alkali Feldspars as Microtextural Markers of Fluid Flow

  • Chapter

Part of the book series: Water Science and Technology Library ((WSTL,volume 34))

Abstract

Alkali feldspars provide an easily read microtextural record of fluid-rock interaction in the range from 450°C to diagenetic temperatures. The microtextures can provide unique insights into paths of fluid flow and mass transfer through crystalline rocks from the nanometre to the kilometre scale. The main thermodynamic driving force for the microtextural changes is elastic strain energy associated with coherency in strain-controlled microperthitic intergrowths and with tweed domain textures in orthoclase, both of which form at higher temperatures in cooling igneous and metamorphic rocks. Spontaneously strained feldspar dissolves in fluid films, reprecipitating as unstrained feldspar, a process which has been called ‘unzipping’. This causes regular strain-controlled microperthites to coarsen to irregular patch and vein perthites, and orthoclase to recrystallize to tartan twinned microcline. Dissolution and reprecipitation around dislocation cores is an important part of these unzipping reactions, which lead to feldspars which are turbid, microporous and micropermeable. Crystal—fluid exchange reactions are driven by unzipping and the porous feldspars readily maintain alkali and isotopic exchange equilibrium with aqueous fluids down to ≤200°C. Intracrystal dissolution—reprecipitation is a process that has affected a high proportion of the alkali feldspar in the granitic upper crust of the Earth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachinski SW, Müller G (1971) Experimental determinations of the microcline—low albite solvus. J Petrol 12: 329–356

    Article  Google Scholar 

  • Bambauer HU, Krause C, Kroll H (1989) TEM-investigation of the sanidine/microcline transition across metamorphic zones: the K-feldspar varieties. Eur J Mineral 1: 47–58

    Google Scholar 

  • Brown WL, Becker SM, Parsons I (1983) Cryptoperthites and cooling rate in a layered syenite pluton. Contrib Mineral Petrol 82: 13–25

    Article  Google Scholar 

  • Brown WL, Parsons I (1984) The nature of potassium feldspar, exsolution microtextures and development of dislocations as a function of composition in perthitic alkali feldspars. Contrib Mineral Petrol 86: 335–341

    Article  Google Scholar 

  • Brown WL, Parsons I (1988a) Inter-and intracrystalline exchange and geothermometry in granulite-facies feldspars. Terra cognita 8 /3: 263

    Google Scholar 

  • Brown WL, Parsons I (1988b) Zoned ternary feldspars in the Klokken intrusion: exsolution microtextures and mechanisms. Contrib Mineral Petrol 98: 444–454

    Article  Google Scholar 

  • Brown WL, Parsons I (1989) Alkali feldspars: ordering rates, phase transformations and behaviour diagrams for igneous rocks. Mineral Mag 53: 25–42

    Article  Google Scholar 

  • Brown WL, Parsons I (1993) Storage and release of elastic strain energy: the driving force for low-temperature reactivity and alteration of alkali feldspar. In: Boland JN and Fitz Gerald JD (eds) Defects and processes in the solid state: geoscience applications. The McLaren Volume. Elsevier Science Publishers, 267–290

    Google Scholar 

  • Brown WL, Parsons I (1994) Feldspars in igneous rocks. In: Parsons I (ed) Feldspars and their reactions. NATO ASI Series C421, Kluwer Academic Publishers, 449–499

    Chapter  Google Scholar 

  • Brown WL, Lee MR, Waldron KA, Parsons I (1997) Strain-driven disordering of low microcline to low sanidine during partial phase separation in microperthites. Contrib Mineral Petrol 127: 305–313

    Article  Google Scholar 

  • Eggleton RA, Buseck PR (1980) The orthoclase—microcline inversion: a high resolution transmission electron microscope study and strain analysis. Contrib Mineral Petrol 74: 123–133

    Article  Google Scholar 

  • Ferry JM (1985) Hydrothermal alteration of Tertiary igneous rocks from the Isle of Skye, northwest Scotland. II Granites. Contrib Mineral Petrol 91: 283–304

    Article  Google Scholar 

  • Fitz Gerald JD, McLaren AC (1982) The microstructures of microcline from some granitic rocks and pegmatites. Contrib Mineral Petrol 80: 219–29

    Article  Google Scholar 

  • Flehmig W (1977) The synthesis of feldspars at temperatures between 0°C-80°C, their ordering behaviour and twinning. Contrib Mineral Petrol 65: 1–19.

    Article  Google Scholar 

  • Fournier RO (1976) Exchange of Na and IC between water vapor and feldspar phases at high temperature and low vapor pressure. Geochim Cosmochim Acta 40: 1553–1561

    Article  Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary feldspar modelling and thermometry. Am Mineral 73: 201–215

    Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52: 2749–2765

    Article  Google Scholar 

  • Giletti BJ (1985) The nature of oxygen transport within minerals in the presence of hydrothermal water and the role of diffusion. Chem Geol 53: 197–206

    Article  Google Scholar 

  • Green PF (1986) On the thermo-tectonic evolution of Northern England: evidence from fission track analysis. Geol Mag 123: 493–506

    Article  Google Scholar 

  • Guthrie GD, Veblen DR (1991) Turbid alkali feldspars from the Isle of Skye, northwest Scotland. Contrib Mineral Petrol 108: 398–404

    Article  Google Scholar 

  • Harrison TN, Parsons I, Brown PE (1990) Mineralogical evolution of fayalite-bearing rapakivi granites from the Prins Christian Sund pluton, South Greenland. Mineral Mag 54: 57–66

    Google Scholar 

  • Hellmann R (1994) The albite-water system: Part I. The kinetics of dissolution as a function of pH at 100, 200, and 300°C. Geochim Cosmochim Acta 58: 596–611

    Google Scholar 

  • Hochella MF Jr, Banfield JF (1995) Chemical weathering of silicates in nature• a microscopic perspective with theoretical considerations. In: White AF and Brantley SL (eds) Chemical weathering rates of silicate minerals Min Soc Amer Rev Min 31: 353–406

    Google Scholar 

  • Kroll H, Evangelakakis C, Voll G (1993) Two-feldspar geothermometry: a review and revision for slowly cooled rocks. Contrib Mineral Petrol 114: 510–518

    Article  Google Scholar 

  • Lagache M (1984) The exchange equilibrium distribution of alkali and alkaline-earth elements between feldspars and hydrothermal solutions. In: Brown WL (ed) Feldspars and feldspathoids: structures, properties and occurrences. NATO ASI Series C 137, D Reidel Publishing Company, 247–280

    Google Scholar 

  • Lagache and Weisbrod (1977) The system: two alkali feldspars—KC1—NaCl—H20 at moderate to high temperatures and low pressures. Contrib Mineral Petrol 62: 77–101

    Article  Google Scholar 

  • Lee MR, Waldron KA, Parsons I (1995) Exsolution and alteration microtextures in alkali feldspar phenocrysts from the Shap granite. Mineral Mag 59: 63–78

    Article  Google Scholar 

  • Lee MR, Parsons I (1995) Microtextural controls of weathering of perthitic alkali feldspars. Geochim Cosmochim Acta 59: 4465–4488

    Article  Google Scholar 

  • Lee MR, Parsons I (1997) Dislocation formation and albitization in alkali feldspars from the Shap granite. Am Mineral 82: 557–570

    Google Scholar 

  • Lee MR, Waldron KA, Parsons I, Brown WL (1997) Feldspar—fluid interactions in braid microperthites: pleated rims and vein microperthites. Contrib Mineral Petrol 127: 291–304

    Article  Google Scholar 

  • Lee MR, Parsons I (1998) Microtextural controls of diagenetic alteration of detrital alkali feldspars: a case study of the Shap conglomerate ( Lower Carboniferous ), Northwest England. J Sed Res 68: 198–211

    Google Scholar 

  • Lee MR, Hodson ME, Parsons I (1998) The role of intergranular microtextures and microstructures in chemical and mechanical weathering: direct comparisons of experimentally and naturally weathered feldspars. Geochim Cosmochim Acta 62: 2771–2788

    Article  Google Scholar 

  • McDowell SD (1986) Compositional and structural state of coexisting feldspars, Salton Sea geothermal field. Mineral Mag 50: 75–84

    Article  Google Scholar 

  • McLaren AC (1984) Transmission electron microscope investigations of the microstructures of microclines. In: Brown WL ed: Feldspars and feldspathoids: structure, properties and occurrences. NATO ASI Series C, Reidel Publishing Co Dordrecht: 373–409

    Google Scholar 

  • Montgomery CW, Brace WF (1975) Micropores in plagioclase. Contrib Mineral Petrol 52: 17–28

    Article  Google Scholar 

  • O’Neill JR, Taylor HP (1967) The oxygen isotope and cation exchange chemistry of feldspars. Am Mineral 52: 1414–1437

    Google Scholar 

  • Orville PM (1963) Alkali ion exchange between vapor and feldspar phases. Am J Sci 261: 201–237

    Article  Google Scholar 

  • Parsons I (1978) Feldspars and fluids in cooling plutons. Mineral Mag 42: 1–17

    Article  Google Scholar 

  • Parsons I, Boyd R (1971) Distribution of potassium feldspar polymorphs in intrusive sequences. Mineral Mag 38: 295–311

    Article  Google Scholar 

  • Parsons I, Brown WL (1984) Feldspars and the thermal history of igneous rocks. In: Brown WL ed: Feldspars and feldspathoids: structure, properties and occurrences. NATO ASI Series C, Reidel Publishing Co Dordrecht: 317–371

    Google Scholar 

  • Parsons I, Becker SM (1986) High-temperature fluid-rock interactions in a layered syenite pluton. Nature 321: 764–769

    Article  Google Scholar 

  • Parsons I, Mason RA, Becker SM, Finch AA (1991) Biotite equilibria and fluid circulation in the Klokken intrusion. J Petrol 32: 1299–1333

    Article  Google Scholar 

  • Saigal G, Morad S, BjOrlykke K, Egeberg PK, Aagaard P (1988) Diagenetic albitization of detrital K-feldspar in Jurassic, Lower Cretaceous, and Tertiary clastic reservoir rocks from offshore Norway, I. Textures and origin. J Sed Petrol 58: 1003–1013

    Google Scholar 

  • Smith P, Parsons I (1974) The alkali feldspar solvus at 1 kilobar water-vapour pressure. Mineral Mag 39: 747–767

    Article  Google Scholar 

  • Taylor HP, Forester RW (1971) Low-`SO igneous rocks from the intrusive complexes of Skye, Mull and Ardnamurchan, Western Scotland. J Petrol 12: 465–498

    Google Scholar 

  • Tullis J (1983) Deformation of feldspars. In: PH Ribbe, ed: Feldspar Mineralogy, Min Soc Amer Rev Mineral 2: 297–323

    Google Scholar 

  • Velbel MA (1989) Effect of chemical affinity on feldspar hydrolysis rates in two natural weathering systems. Chem Geol 78: 245–253

    Article  Google Scholar 

  • Walker FDL (1990) Ion microprobe study of intragrain micropermeability in alkali feldspars. Contrib Mineral Petrol 106: 124–128

    Article  Google Scholar 

  • Walker FDL, Lee MR, Parsons I (1995) Micropores and micropermeable texture in alkali feldspars: geochemical and geophysical implications. Mineral Mag 59: 505–534

    Article  Google Scholar 

  • Waldron KA, Parsons I (1992) Feldspar microtextures and the multi-stage thermal history of syenites from the Coldwell Complex, Ontario. Contrib Mineral Petrol 111: 222–234

    Google Scholar 

  • Waldron KA, Parsons I, Brown WL (1993) Solution-redeposition and the orthoclase-microcline transformation: evidence from granulites and relevance to IaO exchange. Mineral Mag 57: 687–695

    Article  Google Scholar 

  • Waldron K, Lee MR, Parsons I (1994) The microstructures of perthitic alkali feldspars revealed by hydrofluoric acid etching. Contrib Mineral Petrol 116: 360–364

    Article  Google Scholar 

  • Willaime C, Brown WL (1974) A coherent elastic model for the determination of the orientation of exsolution boundaries: application to the feldspars. Acta Cryst A30: 316–331

    Article  Google Scholar 

  • Wood BJ, Walther JV (1983) Rates of hydrothermal reactions. Science 222: 413–415

    Article  Google Scholar 

  • Worden RH, Rushton JC (1992) Diagenetic K-feldspar textures: a TEM study and model for diagenetic feldspar growth. J Sed Petrol 62: 779–789

    Google Scholar 

  • Worden RH, Walker FDL, Parsons I, Brown WL (1990) Development of microporosity, diffusion channels and deuteric coarsening in perthitic alkali feldspars. Contrib Mineral Petrol 104: 507–15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Parsons, I., Lee, M.R. (2000). Alkali Feldspars as Microtextural Markers of Fluid Flow. In: Stober, I., Bucher, K. (eds) Hydrogeology of Crystalline Rocks. Water Science and Technology Library, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1816-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1816-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5368-8

  • Online ISBN: 978-94-017-1816-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics