Skip to main content

Nature of Turbulence

  • Chapter
Hydrodynamic stability theory

Part of the book series: Mechanics: Analysis ((MECA,volume 9))

  • 524 Accesses

Abstract

Among the theoreticians of the Navier-Stokes equations there is an increasing belief that the last stage of transition and the onset of turbulence may be explained by phenomenological theories based on these equations. All these lines concern only the temporal (and not spatial) irregularities of the solutions and are framed in the dynamical systems theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afraimovich, V. S., V. V. Bikov, L A Shilnikov, The origin and structure of the Lorenz attractor, DAN, 234 (1977) 336–339.

    Google Scholar 

  2. Arsenev, A. A., Construction for turbulent measures for Navier-Stokes equations, Soviet Math. Dokl., 16 (1975), 1422— 1424. (DAN, 225, (1975) 18–20 )

    MathSciNet  Google Scholar 

  3. [3] Bensoussan, A., R. Temam, Equations stochastiques du type Navier-Stokes,J. Funct. Analysis, 13 2 (1973) 195–222.

    Google Scholar 

  4. Bul, E. B., Ya. G. Sinai, On some structurally stable mechanism of onset of invariant hyperbolic sets,Nauka, Moskow, 1978, 104— 112 (Russian).

    Google Scholar 

  5. Bunimovich, L. A., Ya. G. Sinai, Stochasticity of the attractor from Lorenz model,Nonlinear waves, Nauka, Moskow, 1979, 212–226 (Russian).

    Google Scholar 

  6. Busse, F. H., J. A. Whitehead, Instabilities of convection rolls in a high Prandtl number fluid, J. Fluid Mech., 47, 2 (1971) 305–320.

    Article  MathSciNet  Google Scholar 

  7. Dubois, M., P. Bergé, Velocity field in the Rayleigh-Bénard instability: transitions to turbulence, Synergetics vol. 3, A. Pacault, C. Vidal (eds.), Springer, Berlin 1979, 85–93.

    Book  Google Scholar 

  8. -349; II: 49 (1973) 9–123.

    Google Scholar 

  9. Foias, C., Quelques resultats sur les fluides en rotation,Séminaire GoulaouicLions-Schwartz, 1974— 1975, exposé n° VI, VI. 1—VI. 8.

    Google Scholar 

  10. Foias, C., A survey on the functional dynamical system generated by the NavierStokes equations, Lecture Notes in Mathematics 771, Springer, Berlin, 1980, 196–202.

    Google Scholar 

  11. Foias, C., R. Temam, Sur certaines propriétés génériques des équations de NavierStokes, C. R. Acad. Sci. Paris, Série A., 280 (1975) 563–565.

    MathSciNet  MATH  Google Scholar 

  12. Foias, C., R. Temam, On the stationary statistical solutions of the Navier–Stokes equations and turbulence, Publications Mathématiques d’Orsay, n° 120–75–28, 1975.

    Google Scholar 

  13. Foias, C., R. Temam, A generic property of the set of stationary solutions of Navier-Stokes equations, Lecture Notes in Mathematics 565, Springer, Berlin, 1976, 24–28.

    Google Scholar 

  14. Foias, C., R. Temam, Structure of the set of stationary solutions of the NavierStokes equations, Comm. Pure Appl. Math., 30 (1977) 149–164.

    MathSciNet  MATH  Google Scholar 

  15. Foias, C., R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation, Annali Scuola Norm. Sup. di Pisa, Série IV, 5, 1 (1978) 29–63.

    MathSciNet  MATH  Google Scholar 

  16. Foias, C., R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations,J. Math. Pures et Appl., 58 (1979) 339— 368.

    Google Scholar 

  17. Hassard, B. D., N. D. Kazarinoff, Y-H. Wan, Theory and applications of Hopf bifurcation, Cambridge University Press, 1981.

    Google Scholar 

  18. Heywood, J. G., Auxiliary flux and pressure conditions for Navier-Stokes problems, Lecture Notes in Mathematics 771, Springer, Berlin, 1980, 223–234.

    Google Scholar 

  19. Hopf, E., Statistical hydromechanics and functional calculus, J. Rational Mech. Analysis, 1 (1952) 87–123.

    MathSciNet  MATH  Google Scholar 

  20. Iooss, G., Existence et stabilité de la solution périodique secondaire intervenant dans les problèmes d’évolution du type Navier-Stokes, Arch. Rational Mech. Analysis, 47 (1972) 301–329.

    MathSciNet  MATH  Google Scholar 

  21. Iooss, G., Bifurcation of invariant tori in R3, Bifurcation and nonlinear eigen-value problems, Lecture Notes in Mathematics, 782, Springer-Verlag, Berlin, 1980, 192–200.

    Google Scholar 

  22. Landyzhenskaya, O. A., A. M. Vershik, Sur l’évolution des mesures déterminées par les équations de Navier-Stokes et la résolution du problème de Cauchy pour l’équation statique de E. Hopf, A.nali della Scuola Norm. Sup. di Pisa, Série IV, 2 (1977) 209–230.

    Google Scholar 

  23. Lakshmikantham, V (ed.), Nonlinear systems and applications, Acad. Press, 1977, 199–210.

    Google Scholar 

  24. Marsden, J., M. McCracken, The Hopf bifurcation and its applications, Applied Math. Sci., vol. 19, Springer-Verlag, New York, 1976.

    Google Scholar 

  25. Newhouse, S., D. Ruelle, F. Takens, Occurrence of strange Axiom A attractors near quasi-periodic flows on Tm, m 3, Commun. Math. Phys. 64 (1978) 35–40.

    Article  MathSciNet  MATH  Google Scholar 

  26. Nitecki, Z. (ed.), Approximation methods for Navier-Stokes problems, Lecture Notes in Mathematics 771, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  27. Poston, T., I. Stewart, Catastrophe theory and its applications, Surveys and references works in mathematics, Pitman, London, 1978.

    Google Scholar 

  28. Ratiu, T., P. Bernard, (ads.), Turbulence, Lecture Notes in Mathematics 615, Springer-Berlin, 1977.

    Google Scholar 

  29. Rose, H. A., P. H. Sulem, Fully developed turbulence and statistical mechanics, Le Journal de Physique, 39, 5 (1978) 441–484.

    Article  MathSciNet  Google Scholar 

  30. Ruelle, D., Dynamical system with turbulent behaviour, Lecture Notes in Physics 80, Springer, Berlin, 1978, 341–360.

    Google Scholar 

  31. Ruelle, D., F. Takens, On the nature of turbulence, Comm. Math. Phys., 20, (1971) 167— 192; 23 (1971) 343–344.

    MathSciNet  Google Scholar 

  32. Ruelle, D., Microscopic fluctuations and turbulence, Phys. Lett., 72 A (1979) 81–82.

    Google Scholar 

  33. Savulescu, St. N., A stochastic model of fluctuations in boundary layer flows, Lecture Notes in Physics, 76, Springer, Berlin, 1978, 289.

    Google Scholar 

  34. Savulescu, St. N., A. Georgescu, H. Dumitrescu M. Bucur Cercetdri matematice in teoria modernd a stratului limité, Ed. A-ad. R. S. România, 1981.

    Google Scholar 

  35. Sattinger, D. H., Group theoretic methods in bifurcation theory, Lecture Notes in Mathematics 762, Springer Verlag, Berlin, 1979.

    Google Scholar 

  36. of the Amer. Math. Soc., 3, 2 (1980) 779–819.

    MathSciNet  Google Scholar 

  37. Scheffer, V., Turbulence and Hausdorff dimension, Lecture Notes in Mathematics 565, Springer, Berlin, 1976.

    Google Scholar 

  38. Sinai, Ya. G. Ergodic theory as a useful mathematical theory,Recent advances in statistical mechanics, Proc. of the Brasov Intern. School, August-September, 1979, 109— 147.

    Google Scholar 

  39. Sinai, Ya. G., Stochasticity of dynamical systems,Nonlinear waves, Nauka, Moscow, 1979, 192–211 (Russian).

    Google Scholar 

  40. Temam, R. (ed.), Turbulence and Navier-Stokes equations, Lecture Notes in Mathematics 565, Springer, Berlin, 1976.

    MATH  Google Scholar 

  41. Temam, R. Une propriété générique de l’ensemble des solutions stationnaires ou périodiques des équations de Navier-Stokes, Actes du Colloque Franco-Japonais, Tokyo, sept. 1976.

    Google Scholar 

  42. Temam, R., Navier-Stokes equations, theory and numerical analysis, North Holland, Amsterdam, 1977.

    Google Scholar 

  43. Vishik, M. I., Cauchy problem for the Hopf equation corresponding to quasilinear parabolic equations, Soviet Mat. Dokl., 16 (1975) 1126–1130 (DAN, 224 (1975) 23–26 ).

    Google Scholar 

  44. Vishik, M. I., A. V. Foursi’kov, Solutions statistiques homogènes des systèmes différentiels paraboliques et du systéme de Navier-Stokes, A.nali della Scuola Norm. Sun. di Pisa, Série IV, 3 (1977) 531–576.

    Google Scholar 

  45. Yudovich, V. I., The onset of auto-oscillations in a fluid, Prikl. Mat. Mekh., 35, (1971) 638–655.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Georgescu, A. (1985). Nature of Turbulence. In: Hydrodynamic stability theory. Mechanics: Analysis, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1814-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1814-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8289-3

  • Online ISBN: 978-94-017-1814-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics