Skip to main content

The Role of Plant Growth Regulators in the Development and Germination of Conifer Pollen

  • Chapter
Hormonal Control of Tree Growth

Part of the book series: Forestry Sciences ((FOSC,volume 28))

  • 133 Accesses

Abstract

All classes of PGRs have been identified in pollen and at least implicated in its growth and development. When added exogenously, their effects on in vitro pollen germination and tube growth can be either neutral, promotive or inhibitory. It is generally agreed that PGRs play an important role in regulating germination and tube growth but endogenous levels appear to be sufficient and significant responses to in vitro applications are seldom observed. Specific roles of PGRs in conifer pollen have not been elucitated but certain speculations are offered. In pines, auxins derived from pollen may be important in the continued development of the ovule, since unpollinated ovules abort. However, in several other genera (Pseudotsuga for example) pollen is not required to continue ovule development. Gibberellins (GAs) may have a role in the early stages of germination and tube growth. Both polar and non-polar GAs have been isolated from conifer pollen but in germinating pollen, it is the polar GAs which rise and the non-polar GAs that decline during the time of maximum tube growth. Abscisic acid (ABA) occurs in the pollen, styles and ovaries of many angiosperm species and some conifers but it does not have any apparent role in germination or tube growth. It may, however, play an important role in regulating incompatibility reactions. Brassinolides have not been studied in any detail but their occurrence in conifer pollen has been confirmed. Cyclic-adenosine monophosphate (cAMP) may not be considered a PGR but it has been identified in conifer pollen and it does mimic the effects of other PGRs in pollen germination studies. In vitro PGR effects are discussed in relationship to media effects which can have a dramatic influence on pollen germination and tube growth and may explain the lack of a PGR response in certain cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams WT (1983) Application of isozymes in tree breeding. In:Tanksley SD and Orton TJ, eds. Isozymes in Plant Genetics and Breeding, Part A, pp 381–400. Amsterdam: Elsevier Sci Pub

    Google Scholar 

  2. Addicott FT (1943) Pollen germination and pollen tube growth as influenced by pure plant growth substances. Plant Physiol 18: 270–279

    Article  PubMed  CAS  Google Scholar 

  3. Armhein N (1974) Evidence against the occurrence of cAMP in higher plants. Planta 118: 240–258

    Google Scholar 

  4. Andersson E (1980) Temperature conditioned irregularities in pollen mother cells of Picea abies (L.) Karst. Hereditas 92: 27–35

    Article  Google Scholar 

  5. Banga SS and Labana KS (1984) Ethrel induced male sterility in Indian mustard (Brassica juncea (L) Coss). Z Pflanzenzuchtg 92: 229–233

    Google Scholar 

  6. Barendse GWM, Pereira ASR, Berkers PA, Driessen FM, van Eyden-Emons A and Linskens HF (1970) Growth hormones in pollen, styles and ovaries of Petunia hybrida and of Lilium species. Acta Bot Neerl 19: 175–186

    CAS  Google Scholar 

  7. Barnabas B (1985) Effect of water loss on germination ability of maize (Zea mays L.) pollen. Ann Bot 55: 201–204

    Google Scholar 

  8. Bellani LM, Pacini E and Franchi GG (1985) In vitro pollen germination and starch content in species with different reproductive cycle. II. Malus domestica Borkh. cultivars starkcrimson and golden delicious. Acta Bot Neerl 34:65–71

    Google Scholar 

  9. Bonetti A, Cerana R, Lado P, Marre E, Marre MT and Romani G (1983) Mechanism of action of the pollen hormone brassinolide. In: Mulcahy DL and Ottaviano E, eds. Pollen: Biology and Implications for Plant breeding, pp 9–14. New York: Elsevier Sci Pub

    Google Scholar 

  10. Bose N (1959) Effect of gibberellic acid on the growth of pollen tubes. Nature (Lond) 184: 1577

    Article  CAS  Google Scholar 

  11. Brewbaker JL and Kwack BH (1963) The essential role of calcium ion in pollen germination and pollen tube growth. Amer J Bot 50: 859–865

    Article  CAS  Google Scholar 

  12. Brewbaker JL and Majumder SK (1961) Cultural studies of the pollen population effect and the self-incompatibility inhibition. Amer J Bot 48: 457–464

    Article  CAS  Google Scholar 

  13. Bridgwater FE and Trew IF (1981) Supplemental mass pollination. In: Franklin EC, ed. Pollen Management Handbook, pp 52–57. USDA For Ser Agric Hndbk No 587

    Google Scholar 

  14. Calzoni GL and Speranza A (1986) Developmental stage of mature apple pollen: study of RNA and protein synthesis during in vitro germination. Physiol Veg 24: 53–62

    CAS  Google Scholar 

  15. Carmichael JW (1970) The effect of gibberellic acid on in vitro pollen germination in Digitaria pentzii Stent. Proc Soil Crop Sci Soc Florida 30: 255–258

    Google Scholar 

  16. Chandler C (1957) The effect of gibberellic acid on germination and pollen tube growth. Contrib Boyce Thompson Inst 19: 215–244

    CAS  Google Scholar 

  17. Chandler C and Mavrodineanu S (1965) Meiosis of Larix laricina Koch. Contrib Boyce Thompson Inst 23: 67–75

    Google Scholar 

  18. Charpentier JP and Bonnet-Masimbert M (1983) Effect of prior rehydration on the germination in vitro of Douglas-fir (Pseudotsuga menziesii) pollen after storage. Ann Sci For 40: 309–317

    Article  Google Scholar 

  19. Ching KK and Ching TM (1959) Extracting Douglas-fir pollen and effects of gibberellic acid on its germination. For Sci 5: 74–80

    CAS  Google Scholar 

  20. Colangeli A and Owens JN (1984) Pollination mechanism in western hemlock. In: Proc West For Gen Assoc Ann Meet. Genetic gain: Incorporation and Implication for Forestry, p 20. Victoria: Univ of Victoria

    Google Scholar 

  21. Crozier A, Kuo CC, Durely RC and Pharis RP (1970) The biological activties of 26 gibberellins in nine plant bioassays. Can J Bot 48: 867–877

    Article  CAS  Google Scholar 

  22. de Bruyn JA (1966) The in vitro germination of pollen of Setaria sphacelata. I. Effects of carbohydrates, hormones, vitamins and micronutrients. Physiol Plant 19: 365–376

    Article  Google Scholar 

  23. Denison NP and Franklin EC (1975) Pollen management. In: Faulkner R, ed. Seed Orchards, pp 92–100. London: For Comm Bull No 54

    Google Scholar 

  24. Dhawan AK and Malik CP (1979) Cyclic-AMP control of some oxido-reductases during pine pollen germination and tube growth. Phytochem 18: 2015–2017

    Article  CAS  Google Scholar 

  25. Dhawan AK and Malik CP (1981) Effect of growth regulators and light on pollen germination and pollen tube growth in Pinus roxburghii Sarg. Ann Bot 47: 239–248

    CAS  Google Scholar 

  26. Dhingra HR and Varghese TM (1985) Effect of growth regulators on the in vitro germination and tube growth of maize (Zea mays L.) pollen from plants raised under sodium chloride salinity. New Phytol 100: 563–569

    Article  CAS  Google Scholar 

  27. Dickinson DB (1965) Germination of lily pollen: respiration and tube growth. Science 150: 1818–1819

    Article  PubMed  CAS  Google Scholar 

  28. Dickinson DB (1967) Permeability and respiratory properties of germinating pollen. Physiol Plant 20: 118–127

    Article  CAS  Google Scholar 

  29. Dickinson DB (1968) Rapid starch synthesis associated with increasing respiration in germinating lily pollen. Plant Physiol 43: 1–8

    Article  PubMed  CAS  Google Scholar 

  30. Dickinson DB (1978) Influence of borate and pentaerythitol concentrations on germination and tube growth of Lilium longiflorum pollen. J Amer Soc Hort Sci 103: 413–416

    CAS  Google Scholar 

  31. Dotlacil L and Apltauerova M (1978) Pollen sterility induced by ethrel and its utilization in hybridization of wheat. Euphytica 27: 353–360

    Article  CAS  Google Scholar 

  32. Durley RC and Pharis RP (1973) Interconversion of gibberellin A4 to gibberellin Al and A34 by dwarf rice cultivar Tan-ginbozu. Planta b: 357–361

    Google Scholar 

  33. Echols RM and Mergen F (1956) Germination of slash pine pollen in vitro. For Sci 2: 321–327

    Google Scholar 

  34. El-Kassaby YA (1986) CIP Forest Products’ tree improvement program and forest genetics activities 1983–1985. In: Yeatman CW and Boyle TJB, eds. Proc 20th Can Tree Impr Assoc Meet, Part I, pp 231–236. Ottawa: Can For Ser

    Google Scholar 

  35. El-Kassaby YA, Fashler AMK and Sziklai 0 (1984) Reproductive phenology and its impact on genetically improved seed production in a Douglas-fir seed orchard. Silvae Genet 33: 120–125

    Google Scholar 

  36. El-Kassaby YA and Ritland K (1986) The relation of outcrossing and contamination to reproductive phenology and supplemental pollination in a Douglas-fir seed orchard. Silvae Genet 35: 240–244

    Google Scholar 

  37. Eriksson G (1968) Temperature response of pollen mother cells in Larix and its importance for pollen formation. Stud For Suce No 63: 1–131

    Google Scholar 

  38. Eriksson G, Jonsson A and Lindgren D (1973) Flowering in a clone trial of Picea abies Karst. Stud For Suce No 110: 1–45

    Google Scholar 

  39. Hagman M 175) Incompatibility in forest trees. Proc R Soc Lond B 188:313–326

    Google Scholar 

  40. Hagman M and Mikkola L (1963) Observations on cross-, self-and interspecific pollinations in Pinus peuce Grisbe. Silvae Genet 12: 72–79

    Google Scholar 

  41. Hellmers H and Machlis L (1956) Exogenous substrate utilization and fermentation by the pollen of Pinus ponderosa. Plant Physiol 31:284–289 43.

    Google Scholar 

  42. Heslop-Harrison J (1979) An interpretation of the hydrodynamics of pollen. Amer J Bot 66:737–743.

    Google Scholar 

  43. Hoesktra FA (1983) Physiological evolution in angiosperm pollen: possible role of vigour. In: Mulcahy DL and Ottaviano E, eds. Pollen: Biology and Implications for Plant Breeding, pp 35–41. New York: Elsevier Sci Pub

    Google Scholar 

  44. Hoekstra FA and Bruinsma J (1979) Protein synthesis of binucleate and trinucleate pollen and its relationship to tube emergence growth. Planta 146: 559–566

    Article  CAS  Google Scholar 

  45. Hodgkin T and Lyon GD (1984) Pollen germination inhibitors in extracts of Brassica oleracea L. stigmas. New Phytol 96: 293–298

    Article  Google Scholar 

  46. Hodgkin T and Lyon GD (1986) The effect of Brassica oleracea stigma extracts on the germination of B. oleracea pollen in a thin layer chromatographic bioassay. J Exp Bot 37: 406–411

    Article  Google Scholar 

  47. Hogenboom NG (1975) Incompatibility and incongruity: two different mechanisms for the non-functioning of intimate partner relationships. Proc R Soc Lond B 188: 361–375

    Article  Google Scholar 

  48. Ivonis I Yu (1969) Gibberellin-like substances in young cones and pollen of Scotch pine trees. Fiziol Rast 16: 937–939

    CAS  Google Scholar 

  49. Jackson DI and Sweet GB (1972) Flower initiation in temperate woody plants. Horticult Abstr 42: 9–24

    Google Scholar 

  50. Johri BM and Vasil IK (1961) Physiology of pollen. Bot Rev 27: 325–381

    Article  CAS  Google Scholar 

  51. Kamienska A, Durley RC and Pharis RP (1976a) Isolation of gibberellins A3, A4 and A7 from Pinus attenuata pollen. Phytochem 15: 421–424

    Article  CAS  Google Scholar 

  52. Kamienska A, Durley RC and Pharis Ri’ (1976b) Endogenous gibberellins of pine pollen. III. Conversions of 1,2–[H]GA4 to gibberellins A and A 4 in germinating pollen of Pinus attenuata Lemm. Plant Physiol 18:68–703

    Google Scholar 

  53. Kamienska A and Pharis RP (1975) Endogenous gibberellins of pine pollen. II. Changes during germination of Pinus attenuata P. coulteri and P. ponderosa pollen. Plant Physiol 56: 655–659

    Article  PubMed  CAS  Google Scholar 

  54. Katsumata T, Takahashi N and Ejiri SI (1978) Biochemical studies on pollen. XXI. Changes of cyclic AMP level and adenylate cyclase activity during germination of pine pollen. Agric Biol Chem 42: 2161–2162

    Google Scholar 

  55. Kobayashi S, Ariga M, Ozawa T and H Imagawa (1984) Pollen growth inhibitors in Pinus densiflora pollen: isolation, biological activities, and structure-activity relationship. Agric Biol Chem 48: 389–395

    Article  CAS  Google Scholar 

  56. Konar RN (1958) Effect of IAA and kinetin on the pollen tube growth of Pinus roxburghii Sar. Cur Sci 27: 216–217

    CAS  Google Scholar 

  57. Kopcewicz J (1969) The dynamics of growth substances during the development of the pine inflorescences. I. Male inflorescences. Roczn Nank Roln 95 (Ser A): 105–112

    CAS  Google Scholar 

  58. Koski V (1973) On self-pollination, genetic load and subsequent inbreeding in some conifers. Comm Inst For Fenn 78: 1–42

    Google Scholar 

  59. Kossuth SV and Fechner GH (1973) Incompatibility between Picea pungens Engelm. and Picea engelmannii Parry. For Sci 19: 50–60

    Google Scholar 

  60. Kriebel HB (1–TW Embryo development and hybridity barriers in white pines (section Strobus). Silvae Genet 21:39–44

    Google Scholar 

  61. Kuhlwein H (1948) Uber keimungsfordernde substanzen in pollen und narben. Planta 35: 528–535

    Article  Google Scholar 

  62. Larionova NA, Minina EG, Kir’yanova IA, Tolkachev ON and Mitrofanova TK (1977) Auxins, growth inhibitors, and lipids of the pollen of siberian pine. Fiziol Rast 24: 175–179

    CAS  Google Scholar 

  63. Loo TL and Hwang TC (1944) Growth stimulation by manganese sulphate, indole-3–acetic acid, and colchicine in pollen germination and pollen tube growth. Amer J Bot 31: 356–367

    Article  CAS  Google Scholar 

  64. Malik CP and Bhandal IS (1983) Hormonal regulation of pollen germination and pollen tube growth. In: Purohit SS, ed. Aspects of Physiology and Biochemistry of Plant Hormones, pp 217–253. New Dehli, Kalyani

    Google Scholar 

  65. Malik CP and Chhabra N (1976) Hormonal regulation of pollen germination and tube elongation in Arachis hypogaea. Proc Ind Acad Sci 84B:101–b

    Google Scholar 

  66. Malik CP, Chhabra N and Vermani S (1976) Cyclic AMP-induced elongation of pollen tubes in Tradescantia paludosa. Biochem Physiol Pflanzen 1698: 311–315

    Google Scholar 

  67. Malik CP and Mehan M (1975) Correlative effects of auxins, gibberellic acid, kinetin on the elongation of pollen tubes in Calotropis procera. Biochem Physiol Pflanzen 167: 295–301

    CAS  Google Scholar 

  68. Mascarenhas JP and Bell E (1969) Protein synthesis during germination of pollen. Studies on polyribosome formation. Biochem Biophys Acta 179: 199–203

    Article  PubMed  CAS  Google Scholar 

  69. McKenna MA and Mulcahy DL (1983) Ecological aspects of gametophytic competition in Dianthus chinensis. In: Mulcahy DL and Ottaviano E eds. Pollen: Biology and Implications for Plant Breeding, pp 419–424. New York: Elsevier Sci Pub

    Google Scholar 

  70. McLeod KA (1975) The control of growth of tomato pollen. Ann Bot 39: 591–596

    CAS  Google Scholar 

  71. McWilliam JR (1958) The role of the micropyle in the pollination of Pinus. Bot Gaz 120: 109–117

    CAS  Google Scholar 

  72. McWilliam JR (1960) Pollen germination of Pinus as affected by the environment. For Sci 6: 27–39

    Google Scholar 

  73. Mellerowicz E and Bonnet-Masimbert M (1986) The importance of moisture content of pollen used in controlled crosses for Douglas-fir. Ann Sci For 43: 179–188

    Article  Google Scholar 

  74. Michalski L (1967) Growth regulators in the pollen of pine (Pinus sylvestris L.). Acta Soc Bot Pol 36: 475–481

    Google Scholar 

  75. Mikkola L (1969) Observations on interspecific sterility in Picea. Ann Bot Fenn 6: 285–339

    Google Scholar 

  76. Muren RC, Ching TM and Ching KK (1979) Metabolic study of Douglas-fir pollen germination in vitro. Physiol Plant 46: 287–292

    Article  CAS  Google Scholar 

  77. Nagar PK and Raja Rao T (1986) Early changes in growth regulator content of pollinated guava fruits. Scientia Hortic 29: 139–146

    Article  Google Scholar 

  78. Nissen P (1985) Dose responses of auxins. Physiol Plant 65: 357–374

    Article  CAS  Google Scholar 

  79. Nitsch JP (1952) Plant hormones in the development of fruits. Quart Rev Biol 27: 33–57

    Article  PubMed  CAS  Google Scholar 

  80. Nygaard P (1969) Studies on the germination of pine pollen (Pinus mugo) in vitro. I. Growth conditions and effects of pH and temperature on germination, tube growth and respiration. Physiol Plant 22: 338–346

    Article  CAS  Google Scholar 

  81. Nygaard P (1970) Studies on the germination of pine pollen (Pinus mugo) in vitro. II. Effects of different ions. Physiol Plant 23: 372–384

    Article  CAS  Google Scholar 

  82. Nygaard P (1971) Studies on the germination of pine pollen (Pinus mugo) in vitro. III. Inhibition by d-mannose and deoxyhexoses. Physiol Plant 24: 130–135

    Article  CAS  Google Scholar 

  83. Nygaard P (1973) Nucleotide metabolism during pine pollen germination. Physiol Plant 28: 361–371

    Article  CAS  Google Scholar 

  84. Nygaard P (1977) Utilization of exogenous carbohydrates for tube growth and starch synthesis in pine pollen suspension cultures. Physiol Plant 39: 206–210

    Article  CAS  Google Scholar 

  85. Ottaviano E, Sair-Gorla M and Mulcahy DL (1980) Pollen tube growth rate in Zea mays: implications for genetic improvement of crops. Science 210: 437–438

    Article  PubMed  CAS  Google Scholar 

  86. Owens JN (1980) Reproductive biology of conifers. In: Dancik BP and Higginbotham KO eds. Proc 6th North Amer For Biol Workshop, pp 77–92. Edmonton: Univ of Alberta

    Google Scholar 

  87. Owens JN and Blake MD (1985) Forest tree seed production. Can For Ser Info Rep PI-X-53: 1–161

    Google Scholar 

  88. Owens JN and Simpson SJ (1982) Further observations on the pollination mechanism and seed production of Douglas-fir. Can J For Res 12: 431–434

    Article  Google Scholar 

  89. Pfahler PL, Wilcox M, Mulcahy DL and Knauft DA (1982) In vitro germination and pollen tube growth of maize (Zea mays L.) pollen. X. Pollen source genotype and gibberellin A3 interactions. Acta Bot Neerl 31: 105–111

    CAS  Google Scholar 

  90. Puritch GS (1972) Cone production in conifers. Can For Ser Info Rep BC-X-65: 1–39

    Google Scholar 

  91. Raghavan V and Baruah HK (1959) Effect of time factor on the stimulation of pollen germination and pollen tube growth by certain auxins, vitamins, and trace elements. Physiol Plant 12: 441–451

    Article  Google Scholar 

  92. Rosen WG (1968) Ultrastructure and physiology of pollen. Ann Rev Plant Physiol 19: 435–462

    Article  Google Scholar 

  93. Ross SD and Pharis RP (1986) Status of flowering in conifers: a constraint to tree improvement? In: Caron F, Corriveau AG and Boyle TJB, eds. Proc 20th Can Tree Impr Assoc Meet, Part 2, pp 11–28. Ottawa: Can For Ser

    Google Scholar 

  94. Sacher RF, Mulcahy DL and Staples RC (1983) Developmental selection during self pollination of Lycopersicon x solanum F1 for salt tolerance of F2. In: Mulcahy DL and Ottaviano E, eds. Pollen: Biology and Implications for Plant Breeding, pp 329–334. New York: Elsevier Sci Pub

    Google Scholar 

  95. Sani HS and Aspinall D (1981) Effect of water deficit on sporogenesis in wheat (Triticum aestivum L.). Ann Bot (Lond) 48: 623–633

    Google Scholar 

  96. Sani HS and Aspinall D 1982 ) Sterility in wheat (Triticum aestivum L.) induced by water deficit or high temperature: possible mediation by abscisic acid. Aust J Plant Physiol 9: 529–537

    Article  Google Scholar 

  97. Sani HS, Sedgley M and Aspinall D (1983) Effect of heat stress during floral development on pollen tube growth and ovary anatomy in wheat (Triticum aestivum L.). Aust J Plant Physiol 10: 137–144

    Article  Google Scholar 

  98. Sani HS, Sedgley M and Aspinall D (1984) Developmental anatomy in wheat of male sterility induced by heat stress, water deficit or abscisic acid. Aust J Plant Physiol 11: 243–253

    Article  Google Scholar 

  99. Sarvas R (1968) Investigation on the flowering and seed crop of Pinus sylvestris. Comm Inst For Fenn 53: 1–198

    Google Scholar 

  100. Sarvas R (1972) Investigations on the annual cycle of development of forest trees: active period. Comm Inst For Fenn 76: 1–110

    Google Scholar 

  101. Sedgley M (1975) Flavanoids in pollen and stigma of Brassica oleracea and their effects on pollen germination in vitro. Ann Bot 39: 1091–1095

    CAS  Google Scholar 

  102. Shibuya T, Funamizu M and Kitahara Y ( 1978 Abscisic acid from Pinus densiflora pollen. Phytochem 17: 322–323

    Article  CAS  Google Scholar 

  103. Shivanna KR and Heslop-Harrison J (1981) Membrane state and pollen viability. Ann Bot 47: 759–770

    Google Scholar 

  104. Sidhu RK, Elsra AS and Malik CP (1986) Hormonal effects on tube elongation, CO2 fixation and phosphoenolpyruvate carboxylase activity in Amaryllis pollen: promotion by abscisic acid. Plant Growth Reg 4: 293–298

    Article  CAS  Google Scholar 

  105. Singh KP, Singh I and Kaushik MP (1983) Growth, flowering, sex behaviour, pollen sterility and fruit set in Lagenaria siceraria Standle as as affected by morphactin. Ind J Plant Physiol 36: 15–20

    Google Scholar 

  106. Sondheimer E and Linskens HF (1974) Control of in vitro germination and tube extension of Petunia hybrida pollen. In: Proc Kon Nederl Akad Wet Ser C, 77: 116–124

    Google Scholar 

  107. Stanley RG and Linskens HF (1974) Pollen: Biology Biochemistry and Management. Springer-Verlag New York. 307 p

    Book  Google Scholar 

  108. Sweet GB and Lewis PN (1969) A diffusible auxin from Pinus radiata pollen and its possible role in stimulting ovule development. Planta (Berl) 89: 380–384

    Article  CAS  Google Scholar 

  109. Sweet GB and Lewis PN (1971) Plant growth substances in pollen of Pinus radiata at different levels of germination. N Z J Bot 9: 146–156

    Article  Google Scholar 

  110. Tagliasacchi AM, Forino IMC, Bellani LB and Avanzi S (1985) Dynamics of pollen grain germination in two cultivars of Malus domestica: the influence of actinomycin D on fresh and stored pollen grains. Ann Bot 56: 29–33

    CAS  Google Scholar 

  111. Takahashi N, Ejiri S and Katsumata T (1978) Changes of cyclic AMP and cyclic GMP levels during germination of pine pollen. Agric Biol Chem 42: 1605–1606

    Article  CAS  Google Scholar 

  112. Tanaka A (1958) The pollen germination and pollen tube development in Pinus densiflora Sieb. et Zucc. III. The growth inhibiting substances in the ether extract from Pinus pollen grains. Sci Rep Tohoku Univ Ser 4 (Biol) 24: 45–54

    Google Scholar 

  113. Tanaka A (1964) The pollen germination and pollen tube development in Pinus densiflora Sieb. et Zucc. VII. The changes is the amount of acidic growth inhibitors during pollen germination. Sci Rep Tohoku Univ Ser 4 (Biol) 30: 211–217

    CAS  Google Scholar 

  114. Trewavas AJ (1982) Growth substance sensitivity: the limiting factor in plant development. Physiol Plant 55: 60–72

    Article  CAS  Google Scholar 

  115. Vasil IK (1964) Effect of boron on pollen germination and pollen tube growth. In: Linskens HF ed. Pollen Physiology and Fertilization, pp 107–119. Amsterdam: North-Holland Pub Co

    Google Scholar 

  116. Walton DC (1980) Biochemistry and physiology of abscisic acid. Ann Rev Plant Physiol 31: 453–489

    Article  CAS  Google Scholar 

  117. Webber JE (1987) Increasing seed yield and genetic efficiency in Douglas-fir seed orchards through pollen management. For Ecol Man (in press)

    Google Scholar 

  118. Webber JE and Yeh FCH (1987) Test of the first-on first-in pollination hypothesis in coastal Douglas-fir. Can J For Res 17: 63–68

    Article  Google Scholar 

  119. Wheeler NC and Jech KS (1986) Estimating supplemental mass pollination (SMP) success electophoretically. In: Caron F, Corriveau AG and Boyle TJB, eds. Proc. 20th Can Tree Imp Assoc Meet, Part 2, pp 111–120. Ottawa: Can For Ser

    Google Scholar 

  120. Whitehead DR (1983) Wind pollination: some ecological and evolutionary perspectives. In: Real L, ed. Pollination Biology, pp 97–108. New York: Academic Press Inc

    Google Scholar 

  121. Woessner RA and Franklin EC (1973) Continued reliance on wind-pollinated southern pine seed orchards - is it reasonable? In: Proc 12th South For Tree Imp Con, pp 64–73. Baton Rouge: Louisiana State Univ

    Google Scholar 

  122. Yang ZH, Barendse GWM and Linskens HF (1985) Abscisic acid in the reproductive organs of Petunia hybrida and Lilium longiflorum. Acta Bot Neerl 34: 73–82

    CAS  Google Scholar 

  123. Yokota T, Arima M, Takahashi N, Takatsuto S, Ikekawa N and Takematsu T (1983) 2–Deoxycastasterone, a new brassinolide-related bioactive steroid from Pinus pollen. Agric Biol Chem 47: 2419–2420

    Google Scholar 

  124. Zamir D, Tanksley SD and Jones RA (1981) Low temperature effect on selective fertilization by pollen mixtures of wild and cultivated tomato species. Theor Appl Genet 59: 235–238

    Google Scholar 

  125. Zeng ZR and King RW (1986) Regulation of grain number in wheat: changes in endogenous levels of abscisic acid. Aust J Plant Physiol 13: 347–352

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Webber, J.E. (1987). The Role of Plant Growth Regulators in the Development and Germination of Conifer Pollen. In: Kossuth, S.V., Ross, S.D. (eds) Hormonal Control of Tree Growth. Forestry Sciences, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1793-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1793-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8307-4

  • Online ISBN: 978-94-017-1793-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics