Skip to main content

An Overview of the Homocysteine Lowering Clinical Trials

  • Chapter
Homocysteine and Vascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 230))

Summary

Epidemiological studies have shown that cases with coronary, cerebral, or peripheral vascular disease have higher homocysteine levels than controls, but substantial uncertainty exists about the strength of any risk associations in age and sex-specific groups and in those with and without prior vascular disease. Folic acid and other B-vitamins are highly effective in delaying the vascular complications in patients with homocystinuria, who have markedly elevated levels. However, the effect on vascular risk of homocysteine reduction among those with lower levels is unknown, which has prompted calls for large-scale clinical trials to test this hypothesis. There was substantial uncertainty about the optimal regimen for lowering homocysteine levels. But many of these issues have recently been clarified by a meta-analysis of 12 randomized trials of vitamin supplements to lower homocysteine levels. The meta-analysis showed that the proportional and absolute reductions in homocysteine varied according to pre-treatment homocysteine levels, from 16% (95% CI: 11% to 20%) among those in the bottom fifth to 39% (95% CI: 36% to 43%) among those in the top fifth. After standardizing for a pretreatment homocysteine of 12 µmol/l and folate level of 12 nmol/l, there was no longer any heterogeneity in the proportional reductions in homocysteine achieved in the individual trials. Under these circumstances, the meta-analysis estimated that dietary folic acid reduced homocysteine levels by 25% (95% CI: 23 to 28%) with similar effects in a daily dosage range of 0.5 mg to 5 mg. Vitamin B12 (mean 0.5 mg) produced an additional reduction in blood homocysteine of 7%, whereas vitamin B6 had no additional effects on homocysteine levels. Vitamin B6 is effective at lowering homocysteine levels after methionine loading, which appears to have an independent effect on vascular risk. In view of the independent effects of folic acid and vitamin B6, clinical trials with factorial designs (where participants are randomly assigned to receive to receive folic acid or placebo, and individuals in each group are subsequently randomly assigned to receive either vitamin B6 or placebo) would allow assessment of the separate and combined effects of both vitamins without materially increasing the number of patients. Current and planned large-scale clinical trials to assess the effects of vitamin supplements on risk of vascular disease should provide reliable evidence for this hypothesis in almost 40000 patients with prior heart disease and several thousand patients with a prior stroke or TIA. Collaborative analysis of the post-publication follow-up of individual participants in the separate trials should provide reliable evidence of the importance of folic acid and vitamin B6 in age-specific groups, and different disease categories, and across a wide range of pre-treatment homocysteine levels. The results of these trials are required before advocating widespread screening for elevated homocysteine levels or advocating the use of vitamin supplements in high-risk individuals or changing population mean levels of folate (by fortification of flour) for the prevention of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boushey C, Beresford SAA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: probable benefits of increasing folic acid intakes. JAMA 1995; 274. 1049–57.

    Article  PubMed  CAS  Google Scholar 

  2. Stampfer MJ, Malinow MR, Willett WC, Newcomer LM, Upson B, Ullmann D, et al. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA 1992; 268: 877–81.

    Article  PubMed  CAS  Google Scholar 

  3. Wald NJ, Watt HC, Law MR, Weir DG, McPartlin J, Scott J. Homocysteine and ischaemic heart disease: results of a prospective study with implications regarding prevention. Arch Int Med 1988; 158: 862–7.

    Article  Google Scholar 

  4. Evans RW, Shaten BJ, Hempel JD, Cutler JA, Kuller LH. Homocyst(e)ine and risk of cardiovascular disease in the Multiple Risk Factor Intervention Trial. Arterioscler Thromb Vasc Biol 1997; 17: 1947–53.

    Article  PubMed  CAS  Google Scholar 

  5. Alfthan G, Pekkanen J, Jauhiainen M, Pitkaniemi J, Karvonen M, Tuomilehto J, et al. Relation of serum homocysteine and lipoprotein(a) concentrations to atherosclerotic disease in a prospective Finnish population based study. Atherosclerosis 1994; 106: 9–19.

    Article  PubMed  CAS  Google Scholar 

  6. Arnesen E, Refsum H, Bonaa KH, Ueland PM, Forde OH, Nordrehaug JE. Serum total homocysteine and coronary heart disease. Int J Epidemiol 1995; 24: 704–9.

    Article  PubMed  CAS  Google Scholar 

  7. Malinow MR, Ducimetiere P, Luc G, Evans AE, Arvelier D, Cambien F, Upson BM. Plasma homocyst(e)ine levels and graded risk for myocardial infarction: findings in two populations at contrasting risk for coronary heart disease. Atherosclerosis 1996; 126: 27–34.

    Article  PubMed  CAS  Google Scholar 

  8. Graham IM, Daly LE, Refsum HM, Robinson K, Brattström LE, Ueland PM et al. Plasma homocysteine as a risk factor for vascular disease: The European Concerted Action Project. JAMA 1997; 277: 1775–81.

    Article  PubMed  CAS  Google Scholar 

  9. Verhoef P, Kok FJ, Kruyssen DA, Schouten EG, Witteman JC, Grobbee DE, et al. Plasma total homocysteine, B vitamins, and risk of coronary atherosclerosis. Arterioscler Thromb Vasc Biol 1997; 17: 989–95.

    Article  PubMed  CAS  Google Scholar 

  10. Schwartz SM, Siscovick DS, Malinow MR, Rosendaal FR, Beverly RK, Hess DL, et al. Myocardial infarction in young women in relation to plasma total homocysteine, folate, and a common variant in the methylenetetrahydrofolate reductase gene. Circulation 1997; 96: 412–7.

    Article  PubMed  CAS  Google Scholar 

  11. Loehrer FM, Angst CP, Haefeli WE, Jordan PP, Ritz R, Fowler B. Low whole-blood Sadenosylmethionine and correlation between 5-methyltetrahydrofolate and homocysteine in coronary artery disease. Arterioscler Thromb Vasc Biol 1996; 16: 727–33.

    Article  PubMed  CAS  Google Scholar 

  12. Verhoef P, Stampfer MJ, Buring JE, Gaziano JM, Allen RH, Stabler SP et al. Homocysteine metabolism and risk of myocardial infarction: relation with vitamins B6, B12 and folate. Am J Epidemiol 1996; 143; 845–59.

    Article  PubMed  CAS  Google Scholar 

  13. von Eckardstein A, Malinow MR, Upson B, Heinrich J, Schulte H, Schonfeld R, et al. Effects of age, lipoproteins, and hemostatic parameters on the role of homocyst(e)inemia as a cardiovascular risk factor in men. Arterioscler Thromb 1994; 14: 460–4.

    Article  Google Scholar 

  14. Genest JJ Jr, McNamara JR, Salem DN, Wilson PW, Schaefer EJ, Malinow MR, et al. Plasma homocyst(e)ine levels in men with premature coronary artery disease. Impaired homocysteine metabolism in early-onset cerebral and peripheral occlusive arterial disease. J Am Coll Cardiol 1990; 16: 1114–9.

    Article  PubMed  Google Scholar 

  15. Hopkins PN, Wu LL, Wu J, Hunt SC, James BC, Vincent GM, et al. Higher plasma homocyst(e)ine and increased susceptibility to adverse effects of low folate in early familial coronary artery disease. Arterioscler Thromb Vasc Biol 1995; 15: 1314–20.

    Article  PubMed  CAS  Google Scholar 

  16. Pancharuniti N, Lewis CA, Sauberlich HE, Perkins LL, Go RC, Alvarez JO, et al. Plasma homocyst(e)ine, folate, and vitamin B12 concentrations and risk for early-onset coronary artery disease. Am J Clin Nutr 1994 Apr; 59 (4): 940–8.

    PubMed  CAS  Google Scholar 

  17. Robinson K, Mayer EL, Miller DP, Green R, van Lente F, Gupta A, et al. Hyperhomocysteinemia and low pyridoxal phosphate. Common and independent reversible risk factors for coronary artery disease. Circulation 1995; 92: 2825–30.

    Article  PubMed  CAS  Google Scholar 

  18. Dalery K, Lussier Cacan S, Selhub J, Davignon J, Latour Y, Genest J Jr. Homocysteine and coronary artery disease in French Canadian subjects: relation with vitamins B12, B6, pyridoxal phosphate, and folate. Am J Cardiol 1995; 75: 1107–11.

    Article  PubMed  CAS  Google Scholar 

  19. Ubbink JB, Vermaak WJH, Bennett PJ, van Staden DA, Bisbort S. The prevalence of hyperhomocysteinemia and hypercholesterolemia in angiographically defined coronary heart disease. Klin Wochenschr 1991; 69: 527–34.

    Article  PubMed  CAS  Google Scholar 

  20. Blacher J, Montalescot G, Ankri A, Chadefaux Vekemans B, Benzidia R, Grosgogeat Y, et al. [Hyperhomocysteinemia in coronary artery diseases. Apropos of a study on 102 patients]. Arch Mal Coeur Vaiss 1996; 89: 1241–6.

    PubMed  CAS  Google Scholar 

  21. Malinow MR, Sexton G, Auerbach M, Grossman M, Wilson D, Upson B. Homocyst(e)inemia in daily practice. Coronary Artery Dis 1990; 1: 215–220.

    Article  Google Scholar 

  22. Lolin YI, Sanderson JE, Cheng SK, Chan CF, Pang CP, Woo KS, et al. Hyperhomocysteinemia and premature coronary artery disease in the Chinese. Heart 1996; 76: 117–22.

    Article  PubMed  CAS  Google Scholar 

  23. Israelsson B, Brattström LE, Hultberg BL. Homocysteine and myocardial infarction. Atherosclerosis 1988; 71: 227–33.

    Article  PubMed  CAS  Google Scholar 

  24. Brattström L, Israelsson B, Norrving B, Bergquist D, Thorne J, Hultberg B, Hamfelt A. Impaired homocysteine metabolism in early-onset cerebral and peripheral occlusive arterial disease. Effects of pyridoxine and folic acid treatment. Atherosclerosis 1990; 81: 5160.

    Article  Google Scholar 

  25. Coull BM, Malinow MR, Beamer N, Sexton G, Nordt F, deGarmo P. Elevated plasma homocyst(e)ine concentration as a possible independent risk factor for stroke. Stroke 1990; 21: 572–6.

    Article  PubMed  CAS  Google Scholar 

  26. Verhoef P, Hennekens CH, Malinow MR, Kok FJ, Willett WC, Stampfer MJ. A prospective study of plasma homocyst(e)ine and risk of ischemic stroke. Stroke 1994; 10: 1924–30.

    Article  Google Scholar 

  27. Lindgren A, Brattström L, Norrving B, Hultberg B, Andersson A, Johansson BB. Plasma homocysteine in the acute and convalescent phases after stroke. Stroke 1995; 26: 795–800.

    Article  PubMed  CAS  Google Scholar 

  28. Petri M, Roubenoff R, Dallai GE, Nadeau MR, Selhub J, Rosenberg IH. Plasma homocysteine as a risk factor for atherothrombotic events in systemic lupus erythematosis. Lancet 1996; 348: 1120–4.

    Article  PubMed  CAS  Google Scholar 

  29. Perry IJ, Refsum H, Morris RW, Ebrahim SB, Ueland PM, Shaper AG. Prospective study of serum total homocysteine and risk of stroke in middle-aged British men. Lancet 1995; 346: 1395–8.

    Article  PubMed  CAS  Google Scholar 

  30. Evers S, Koch H,G, Grotemeyer KH, Lange B, Deufel T, Ringelstein EB. Features, symptoms, and neurophysiological findings in stroke associated with hyperhomocysteinemia. Arch Neurol 1997; 54: 1276–1282.

    Article  PubMed  CAS  Google Scholar 

  31. Molgaard J, Malinow MR, Lassvik C, Holm A, Upson B, Olsson AG. Hyperhomocyst(e)inemia: an independent risk factor for intermittent claudication. J Int Med 1992: 231: 273–9.

    Article  CAS  Google Scholar 

  32. Bergmark C, Mansoor MA, Swedenborg J, deFaire U, Svardal AM. Ueland PM. Hyper homocyst(e)inemia in patients operated for lower extremity ischemia below the age of 50 -effect of smoking and extent of disease. Eut J Vase Surg 1993; 7: 391–6.

    Article  CAS  Google Scholar 

  33. Valentine RJ, Kaplan HS, Green R, Jacobsen DW, Myers Sl, Clagett GP. Lipoprotein(a), homocysteine and hypercoagulable states in young men with premature peripheral atherosclerosis: a prospective controlled analysis. J Vasc Surg 1996; 23: 53–61.

    Article  PubMed  CAS  Google Scholar 

  34. Malinow MR, Kang SS, Taylor LM, Coull B, lnahara T. Mukerjee D, Sexton G, Upson B. Prevalence of hyperhomocyst(e)inemia in patients with peripheral occlusive disease. Circulation 1989: 79: 1180–8.

    Article  PubMed  CAS  Google Scholar 

  35. Taylor LM, DeFrang RD, Harris EJ, Porter JM. The association of elevated plasma homocysteine with progression of peripheral vascular disease. J Vase Surg 1991; 13: 129–36.

    Google Scholar 

  36. Cheng SW, Ting AC, Wong J. Fasting total plasma homocysteine and atherosclerotic peripheral vascular disease. Ann Vase Surg 1997; 11: 217–23.

    Article  CAS  Google Scholar 

  37. Nygärd O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M. Vollset SE. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997: 337: 230–36.

    Article  PubMed  Google Scholar 

  38. Mudd SH, Skovby F, Levy HL, Pettigrew KD, Wilcken B. Pyeritz RE et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet 1985; 37: 1–31.

    PubMed  CAS  Google Scholar 

  39. Wilcken DE, Wilcken B. The natural history of vascular disease in homocystinuria and the effects of treatment. J Inherit Metab Dis. 1997; 20: 295–300.

    Article  PubMed  CAS  Google Scholar 

  40. Stampfer MJ, Malinow MR. Can homocysteine lowering reduce cardiovascular risk? Engl J Med 1995; 332: 328–9.

    Article  CAS  Google Scholar 

  41. Graham I, Meleady R. Heart attacks and homocysteine. Br Med J 1996; 313: 1419–20

    Article  CAS  Google Scholar 

  42. Homocysteine Lowering Trialist’s Collaboration. Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomized trials. Br Med J 1998; 316: 894–98.

    Article  Google Scholar 

  43. Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993, 270: 2693–8.

    Article  PubMed  CAS  Google Scholar 

  44. Bates CJ, Mansoor MA, van der Pols J, Prentice A, Cole Ti, Finch S. Plasma total homocysteine in a representative sample of 972 British men and women aged 65 and over. EurJ Clin Nutr 1997; 51: 691–7.

    Article  CAS  Google Scholar 

  45. Daly S, Mills JL, Molloy A, Conley M, Lee YJ, Kirke PN et al. Minimum effective dose of folic acid for food fortification to prevent neural tube defects. Lancet 1997; 350: 1666–1669.

    Article  PubMed  CAS  Google Scholar 

  46. Stabler SP, Allen RH, Savage DG, Lindenbaum J. Clinical spectrum and diagnosis of cobalamin deficiency. Blood 1990; 76: 871–81.

    PubMed  CAS  Google Scholar 

  47. Savage DG, Lindenbaum J. Folate-cobalamin interactions: In Folate in Health and Disease. Ed LB Bailey. New York: Marcel Dekker Inc, 1995: 237–285.

    Google Scholar 

  48. Lindenbaum J, Healton EB, Savage DG, Brust JCM, Garrett TJ, Podell ER et al. Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N Engl J Med 1988; 318: 1720–8.

    Article  PubMed  CAS  Google Scholar 

  49. Cambell NRC. How safe are folic acid supplements? Arch Int Med 1996; 156: 1638–44.

    Article  Google Scholar 

  50. Robinson K, Arheart K, Refsum H, Brattstrom L, Boers G, Ueland P et al. Low circulating folate and vitamin B6 concentrations: risk factors for stroke, peripheral vascular disease, and coronary artery disease. Circulation. 1998; 97: 437–43.

    Article  PubMed  CAS  Google Scholar 

  51. Bostom AG, Jacques PF, Nadeau MR, Williams RR, Elliston RC, Selhub J. Postmethionine load hyperhomocysteinemia in persons with normal fasting total plasma homocysteine:initial results from the NHLBI Family Heart Study. Atherosclerosis 1995; 116: 147–51.

    Article  PubMed  CAS  Google Scholar 

  52. Rimm EB, Willett WC, Hu FB, Sampson L, Colditz G, Manson JA et al. Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women. JAMA 1998; 279: 359–364.

    Article  PubMed  CAS  Google Scholar 

  53. Landgren F, Israelsson B, Lindgren A, Hultberg B, Andersson A, Brattstrom L. Plasma homocysteine in acute myocardial infarction: homocysteine-lowering effect of folic acid. J Int Med 1995; 237: 381–8.

    Article  CAS  Google Scholar 

  54. den Heijer M, Brouwer IA, Bos GMJ, Blom HJ, Spaans AP, Rosendaal FR et al. Vitamin supplementation reduces blood homocysteine levels: a controlled trial in patients with venous thrombosis and healthy volunteers. Arterioscl Thromb Vasc Biol 1998;18(3):356–61.

    Google Scholar 

  55. Ubbink JB, Vermaak WJH, van der Merwe A, Becker PJ, Delport R. Potgieter HC. Vitamin requirements for the treatment of hyperhomocysteinemia in humans. J Nutr 1994, 124: 1927–33.

    PubMed  CAS  Google Scholar 

  56. Ubbink JB, van der Merwe A, Vermaak WJH, Delport R. Hyperhomocysteinemia and the response to vitamin supplementation. Clinical Invest 1993; 71: 993–8.

    CAS  Google Scholar 

  57. Naurath HJ, Joosten E, Riezler R, Stabler SP, Allen RH, Lindenbaum J. Effects of vitamin B12, folate, and vitamin B6 supplements in elderly people with normal serum vitamin concentrations. Lancet 1995; 346: 85–89.

    Article  PubMed  CAS  Google Scholar 

  58. Dierkes J. Vitamin requirements for the reduction of homocysteine blood levels in healthy young women. PhD thesis, University of Bonn,1995.

    Google Scholar 

  59. Woodside JV, Yarnell JWG, Young IS, McCrum EE, Patterson CC, Gey F, et al. The effects of oral vitamin supplementation on cardiovascular risk factors. Proc Nutr Soc 1997;56:149 A.

    Google Scholar 

  60. Cuskelly G, McNulty W, McPartlin J, Strain JJ, Scott JM. Plasma homocysteine response to folate intervention in young women. Ir J Med Sci 1995; 164: 3.

    Article  Google Scholar 

  61. Saltzman E, Mason JB, Jacques PF, Selhub J, Salem D, Schaefer EJ et al. B vitamin supplementation lowers homocysteine levels in heart disease. Clin Res 1994; 42: 172A.

    Google Scholar 

  62. Scandinavian Simvastatin Survival Study Group. Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Study (4S). Lancet 1994; 344: 1383–1389.

    Google Scholar 

  63. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG et al. The effects of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996; 335: 1001–9.

    Article  PubMed  CAS  Google Scholar 

  64. Shepherd J, Cobbe SM, Ford 1, Isles CG, Lorimer AR, Macfarlane PW et al. For the West of Scotland Coronary Prevention Study Group. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995; 333: 1301–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Clarke, R. (2000). An Overview of the Homocysteine Lowering Clinical Trials. In: Robinson, K. (eds) Homocysteine and Vascular Disease. Developments in Cardiovascular Medicine, vol 230. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1789-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1789-2_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5431-9

  • Online ISBN: 978-94-017-1789-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics