Skip to main content

The Treatment of High Homocysteine Concentrations in Homocystinuria: Biochemical Control in Patients and Their Vascular Outcome

  • Chapter
Book cover Homocysteine and Vascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 230))

Summary

The natural history of individuals with homocystinuria due to cystathionine β-synthase deficiency was first documented in 1985 by Mudd et al [1]. Untreated, these individuals have severe hyperhomocysteinemia resulting in complications involving the eye (ectopia lentis), skeletal (osteoporosis, dolichostenomelia), vascular (thromboembolic events) and central nervous systems. Vascular complications are, however, the most striking cause of major morbidity and mortality in homocystinuric individuals. The aims of treatment must be to prevent or ameliorate particularly these life-endangering events by controlling or eliminating the severe hyperhomocysteinemia. There are currently three recognized modalities of treatment. For the pyridoxine responsive individual, pyridoxine in pharmacological doses in combination with folic acid and vitamin B12 will correct the biochemical abnormalities. In pyridoxine-nonresponsive homocystinuria, a methionine restricted, cystine supplemented diet in combination with the use of pyridoxine, folic acid and vitamin B12 is the treatment. However, good compliance with the diet may be difficult to obtain particularly in the late-detected individuals. Betaine, a methyl donor, may be useful in these individuals or as an adjunct to such a diet. Additional medical measures that do not affect the biochemical abnormalities but aim at reducing or eliminating the thrombotic tendencies have also been used. These include dipyridamole, either alone or in combination with aspirin to normalise decreased platelet survival and minimise vascular intimal lesions, the avoidance of situations associated with an increased risk of thromboembolism and the use of high dose antithrombotic prophylaxis with heparin or warfarin in conditions with prolonged bedrest. From the data recently published by the centers treating a total of 84 homocystinuric individuals with 1314 patient-years of treatment in Australia [4], the Netherlands [5] and Ireland [6], 53 vascular events would have been expected if they had remained untreated according to the data of Mudd et al[1]. Instead only five have been recorded while on treatment (relative risk = 0.091 (95% CI 0.043–0.190); p<0.001). This clearly establishes that appropriate treatment of severe hyperhomocysteinemia significantly reduces the vascular risk in homocystinuria, albeit post-treatment homocysteine levels may still be several times higher than the cut-off point for homocysteine in the normal population. The present findings may have relevance to the current concept of mild hyperhomocysteinemia and its association with cardiovascular disease, in which the elevation of plasma homocysteine levels is considerably lower than the post-treatment levels reported by the three centers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mudd SH, Skovby F, Levy HL et al. The natural history of homocystinuria due to cystathionine ß-synthase deficiency. Am J Hum Genet 1985; 37: 1–31.

    PubMed  CAS  Google Scholar 

  2. Carson NAJ. Homocystinuria: Clinical and biochemical heterogeneity. In: Cockburn F, Gitzelmann R, eds. Inborn errors of metabolism in humans. Lancaster, England: MTP Press Limited, 1982: 53–67.

    Chapter  Google Scholar 

  3. Ubbink JB, Becker PJ, Vermaak WJ, Delport R. Results of B-vitamin supplementation study used in a prediction model to define a reference range for plasma homocysteine. Clin Chem 1995a; 41: 1033–7.

    PubMed  CAS  Google Scholar 

  4. Wilcken DEL, Wilcken B. The natural history of vascular disease in homocystinuria and the effects of treatment. J lnher Metab Dis 1997; 20: 295–300.

    Article  CAS  Google Scholar 

  5. Kluijtmans LAJ, Boers GHJ, Kraus JP et al. The molecular basis of homocystinuria due to cystathionine p-synthase deficiency in Dutch homocystinuria patients. Effects of CYSTATHIONINE -SYNTHASE genotype on biochemical and clinical phenotype, and on response upon treatment. Am J Hum Genet - In Press.

    Google Scholar 

  6. Yap S, Naughten E. Homocystinuria due to cystathionine ß-synthase deficiency in Ireland: 25 years’ experience of a newborn screened and treated population with reference to clinical outcome and biochemical control. J Inher Metab Dis 1998; 21: 738–47.

    Article  PubMed  CAS  Google Scholar 

  7. Perry TL. Homocystinuria. In: Nyan WL, ed. Heritable disorders of amino acid metabolism. New York: John Wiley & Sons, Inc, 1974: 395–428.

    Google Scholar 

  8. Barber GW, Spaeth GL. Pyridoxine therapy in homocystinuria. Lancet 1967; 1: 337.

    Article  Google Scholar 

  9. Boers GHJ, Smals AGH, Drayer JIM, Trijbels FJM, Leermakers AI, Kloppenborg PWC. Pyridoxine does not prevent homocystinuria after methionine loading in adult homocystinuria patients. Metabolism 1983; 32: 390–7.

    Article  PubMed  CAS  Google Scholar 

  10. Seashore MR, Durant JL, Rosenberg LE. Studies of the mechanism of pyridoxine responsive homocystinuria. Pediatr Res 1972; 6: 187–96.

    Article  PubMed  CAS  Google Scholar 

  11. Mudd SH, Edwards WA, Loeb PM, Brown MS, Laster I. Homocystinuria due to cystathionine synthase deficiency: the effect of pyridoxine. J Clin Invest 1970; 49: 176–273.

    Article  Google Scholar 

  12. Barber GW, Spaeth GL. The successful treatment of homocystinuria with pyridoxine. J Pediatr 1969; 75: 463–78.

    Article  PubMed  CAS  Google Scholar 

  13. Hollowell JG, Coryell ME, Hall WK, Findley JK, Thevaos TG. Homocystinuria as affected by pyridoxine, folic acid, and vitamin B12. Proc Soc Exper Biol Med 1968; 129: 327–33.

    CAS  Google Scholar 

  14. Yoshida T, Tada K, Yokoyama Y, arakawa T. Homocystinuria of vitamin B6 dependent type. Tokohu J Exp Med 1968; 96: 235–42.

    Article  CAS  Google Scholar 

  15. Gaull GE, Rassin DK, Sturman JA. Enzymatic and metabolic studies of homocystinuria: effects of pyridoxine. Neuropaediatrie 1969; 1: 199–226.

    Article  CAS  Google Scholar 

  16. Hooft C, Carton D, Samyn W. Pyridoxine treatment in homocystinuria. Lancet 1967; 1: 1384.

    Article  Google Scholar 

  17. Carson NA, Carré IJ. Treatment of homocystinuria with pyridoxine. Arch Dis Child 1969; 44: 387–92.

    Article  PubMed  CAS  Google Scholar 

  18. Uhlendorf BW, Conerly EB, Mudd SH. Homocystinuria: studies in tissue culture. Pediatr Res 1973; 7: 645–8.

    Article  PubMed  CAS  Google Scholar 

  19. Mudd SH, Laster L, Finkelstein JD, Irreverre F. Studies on homocystinuria. In: Himwich HE, Kety SS, Smythies JR, eds. Amines and schizophrenia. New York: Pergamon Press, 1965: 246–56.

    Google Scholar 

  20. Gaull GE, Sturman JA, Schaffer F. Homocystinuria due to cystathionine synthase deficiency: enzymatic and ultrastructural studies. J pediatr 1974; 84: 381–90.

    Article  PubMed  CAS  Google Scholar 

  21. Porter PN, Grishaver MS, Jones OW. Characterization of human cystathionine ß-synthase. Evidence for the identity of human L-serine dehydratase and cystathionine ß-synthase. Biochim Biophys Acta 1974; 364: 128–39.

    Article  PubMed  CAS  Google Scholar 

  22. Poole JR, Mudd SH, Conerly EB, Edwards WA. Homocystinuria due to cystathionine synthase deficiency. Studies on nitrogen balance and sulfur excretion. J Clin Invest 1975; 55: 1033–48.

    Article  PubMed  CAS  Google Scholar 

  23. Bittles AH, Carson NAJ. Homocystinuria: studies on cystathionine ß-synthase, Sadenosylmethionine synthetase and cystathionase activities in skin fibroblasts. J Inher Metab Dis 1981; 4: 3–6.

    Article  PubMed  CAS  Google Scholar 

  24. Kim Y, Rosenberg LE. On the mechanism of pyridoxine responsive homocystinuria. II. Properties of normal and mutant cystathionine ß-synthase from cultured fibroblasts. Proc Natl Acad Sci U.S.A. 1974; 71: 4821–5.

    Article  PubMed  CAS  Google Scholar 

  25. Skovby F, Kraus J, Redlich C, Rosenberg LE. Immunochemical studies on cultured fibroblasts from patients with homocystinuria due to cystathionine ß-synthase deficiency. Am J Hum Genet 1982; 34: 73–83.

    PubMed  CAS  Google Scholar 

  26. Skovby F, Kraus JP, Rosenberg LE. Homocystinuria: Biogenesis of cystathionine ßsynthase subunits in cultured fibroblasts and in an in vitro translation system programmed with fibroblast messenger RNA. Am J Hum Genet 1984; 36: 452–9.

    PubMed  CAS  Google Scholar 

  27. Fowler B, Kraus J, Packman S, Rosenberg LE. Homocystinuria. Evidence of 3 distinct classes of cystathionine 3-synthase mutants in cultured fibroblasts. J Clin Invest 1978; 61: 645–53.

    Article  PubMed  CAS  Google Scholar 

  28. Fowler B, Sardharwalla IB. Homocystinuria: cystathionine synthase activity in cultured skin fibroblasts: In: International Symposium on inborn errors of metabolism in humans, Switzerland 1 980: 20.

    Google Scholar 

  29. Brenton DP, Cusworth DC. The response of patients with cystathionine synthase deficiency to pyridoxine. In: Carson NAJ, Raine DN, eds. Inherited disorders of sulfur metabolism. Edinburgh: Churchill Livingston, 1971: 264–74.

    Google Scholar 

  30. Gaull GE, Rassin DK, Struman JA. Pyridoxine-dependency in homocystinuria. Lancet 1968; 2: 1302.

    Article  PubMed  CAS  Google Scholar 

  31. Parry GJ, Bredensen DE,. Sensory neuropathy with low dose pyridoxine. Neurology 1985; 53: 1466–8.

    Article  Google Scholar 

  32. Schaumberg H, Kaplan J, Windebanke A, Vick N, Rasmus S, Pleasure D, Brown MJ. Sensory neuropathy from pyridoxine abuse. N Engl J Med 1983; 309: 445–8.

    Article  Google Scholar 

  33. Boers GHJ. Homocystinuria, a risk factor of premature vascular disease. Clinical Research Series no 3. Dordrecht-Holland/Riverton-USA, Foris Publications, 1986.

    Google Scholar 

  34. Mpofu C, Alani SM, Whitehouse C, Fowler B, Wraith JE. No sensory neuropathy during pyridoxine treatment in homocystinuria. Arch Dis Child 1991; 6: 1081–2.

    Article  Google Scholar 

  35. Morrow G III, Barnes LA. Combined vitamin responsiveness in homocystinuria. J Pediatr 1972; 81: 946–54.

    Article  PubMed  Google Scholar 

  36. Refsum H, Helland S, Ueland PM. Radioenzymic determination of homocysteine in palsma and urine. Clin Chem 1985; 31: 624–8.

    PubMed  CAS  Google Scholar 

  37. Komrower GM, Lambert AM, Cusworth DC, Westfall RG. Dietary treatment of homocystinuria. Arch Dis Child 1966; 41: 666–71.

    Article  PubMed  CAS  Google Scholar 

  38. Perry TL, Dunn HG, Hansen S, MacDougall L, Warrington PD. Early diagnosis and treatment of homocystinuria. Pediatrics 1966; 37: 502–5.

    PubMed  CAS  Google Scholar 

  39. Komrower GM, Sardharwalla IB. The dietary treatment of homocystinuria. In: Carson NAJ, Raine DN, eds. Inherited disorders of sulfur metabolism. Edinburgh. Churchill-Livingston, 1971: 254–63.

    Google Scholar 

  40. Perry TL, Hansen S, Love DL, Crawford LE, Tischler B. Treatment of homocystinuria with a low-methionine diet, supplemental cystine, and a methyl donor. Lancet 1968; 2: 474–8.

    Article  PubMed  CAS  Google Scholar 

  41. Carson NAJ. Homocystinuria: Treatment of a 5-year old retarded child with a natural diet low in methionine. Am J Dis Child 1967; 113: 95.

    PubMed  CAS  Google Scholar 

  42. van Sprang FJ, Wadman SK. Treatment of homocystinuria. In: Inherited disorders of sulfur metabolism, edited by Carson NAJ and Raine DN. Churchill Livingston, Edinburgh 1971: 275.

    Google Scholar 

  43. Brenton DP, Cusworth DC, Dent CE, Jones EE. Homocystinuria, clinical and dietary studies. Q J Med 1966; 35: 325–46.

    PubMed  CAS  Google Scholar 

  44. Parkinson MS. Therapeutic problems of adolescent homocystinuria. Proc R Soc Med 1969; 62: 909–10.

    PubMed  CAS  Google Scholar 

  45. Mudd SH, Levy HL, Skovby F. Disorders of transsulfuration. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic and molecular bases of inherited disease, 7th. edn. New York: McGraw-Hill, 1995: 1279–327.

    Google Scholar 

  46. Andria G, Sebastio G. Homocystinuria due to cystathionine 13-synthase deficiency and related disorders. In: Fernandes J, Saudubray JM, van den Berghe G,eds.: Inborn metabolic diseases-diagnosis and treatment, (2nd. Edn.), Springer-Verlag Berlin Heidelberg, New York, 1996: 177–82.

    Google Scholar 

  47. Brenton DP, Cusworth DC, Dent CE, Jones EE. Homocystinuria. Proc R Soc Med 1963; 56: 996–7.

    Google Scholar 

  48. Parkinson MS. Therapeutic problems of adolescent homocystinuria. Proc R Soc Med 1969; 62: 909–10.

    PubMed  CAS  Google Scholar 

  49. Smolin LA, Benevenga NJ. The use of cyst(e)ine in the removal of protein-bound homocysteine. Am J Clin Nutr 1984; 39: 730.

    PubMed  CAS  Google Scholar 

  50. Berlow S, Bachman RP, Berry GT, Donnell GN, Grix A, Levitsky LL, Hoganson G, Levy HL. Betaine therapy in homocystinuria. Brain Dysfunction 1989; 2: 10.

    Google Scholar 

  51. Wiley VC, Dudman NPB, Wilcken DEL. Interrelations between plasma free and protein-bound homocysteine and cysteine in homocystinuria. Metabolism 1988; 37: 191–5.

    Article  PubMed  CAS  Google Scholar 

  52. Wilcken DEL, Dudman NPB, Tyrrell PA. Homocystinuria due to cystathionine 13-synthase deficiancy–The effects of betaine treatment in pyridoxine-responsive patients. Metabolism 1985; 34: 1115–21.

    Article  PubMed  CAS  Google Scholar 

  53. Wiley VC, Dudman NPB, Wilcken DEL. Free and protein-bound homocysteine and cysteine in cystathionine ß-synthase deficiency: Interrelations during short-and long-term changes in plasma concentrations. Metabolism 1989; 38: 734–9.

    Article  PubMed  CAS  Google Scholar 

  54. Smolin LA, Benevenga J, Berlow S. The use of betaine for the treatment of homocystinuria. J Pediatr 1981; 99: 467–72.

    Article  PubMed  CAS  Google Scholar 

  55. Wilcken DEL, Wilcken B, Dudman NPB, Tyrrell PA. Homocystinuria–The effects of betaine in the treatment of patients not responsive to pyridoxine. N Engl J Med 1983; 309: 448–53.

    Article  PubMed  CAS  Google Scholar 

  56. Harker LA, Ross R, Slighter SJ, Scott CR. Homocysteine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis. J Clin Invest 1976; 58: 731–41.

    Article  PubMed  CAS  Google Scholar 

  57. Harker LA, Ross R. Prevention of homocysteine induced arteriosclerosis: sulphinpyrazone endothelial protection. In: Abe T, Sherry S, eds. A new approach to reduction of cardiac death. Bern-Stuttgart-Vienna: Hans Huber Publishers, 1979: 59–72.

    Google Scholar 

  58. Harker LA, Scott CR. Platelets in homocystinuria. N Engl J Med 1977; 296: 818.

    PubMed  CAS  Google Scholar 

  59. Harker LA, Ross R. Sulphydryl-mediated vascular disease. Eur J Clin Invest 1978; 8: 199.

    PubMed  CAS  Google Scholar 

  60. Schulman JD, Agarwal B, Mudd SH, Shulman NR. Pulmonary embolism in a homocystinuric patient during treatment with dipyridamole and acetylsalicylic acid. N Engl J Med 1978; 299: 661.

    PubMed  CAS  Google Scholar 

  61. Schulman JD, Mudd SH, Shulman NR, Landvater L. Pregnancy and thrombophlebitis in homocystinuria. Blood 1980; 56: 326.

    PubMed  CAS  Google Scholar 

  62. Di Minno G, Davi G, Margaglione M, Cirillo F, et al. Abnormal high thromboxane biosynthesis in homozygous homocystinuria. Evidence for platelet involvement and probucol-sensitive mechanism. J Clin Invest 1993; 92: 1400–6.

    Article  PubMed  Google Scholar 

  63. Bertina RM, Koelman BPC, Koster T et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369: 64–67.

    Article  CAS  Google Scholar 

  64. Mandel H, Brenner B, Berant M et al. Coexistence of hereditary homocystinuria and factor V Leiden–Effects on thrombosis. N Engl J Med 1996; 334: 763–8.

    Article  PubMed  CAS  Google Scholar 

  65. Quere I, Lamarti H, Chadefaux-Vekemans B. Thrombophilia, homocystinuria and mutation of the factor V gene. N Engl J Med 1996; 335: 289.

    Article  PubMed  CAS  Google Scholar 

  66. Kluijtmans LAJ, Boers GHJ, Verbruggen B, Trijbels FJM, Novakova IRO, Blom HJ. Homozygous cystathionine ß-synthase deficiency, combined with factor V Leiden or thermolabile methylenetetrahydrofolate reductase in the risk of venous thrombosis. Blood 1998; 91: 2015–8.

    PubMed  CAS  Google Scholar 

  67. Yap S, O’Donnell KA, O’Neill C, Mayne PD, Thornton P, Naughten E. Factor V Leiden (Arg506G1n), a confounding genetic risk factor but not mandatory for the occurrence of venous thromboembolism in homozygotes and obligate heterozygotes for cystathionine ßsynthase deficiency. Thromb Haemost 1999; 81: 502–5.

    PubMed  CAS  Google Scholar 

  68. Mayer EL, Jacobsen DW, Robinson K. Homocysteine and coronary atherosclerosis. J Am Coll Cardiol 1996; 27: 517–27.

    Article  PubMed  CAS  Google Scholar 

  69. Motulsky AG. Nutritional ecogenetics: homocysteine-related arteriosclerotic vascular disease, neural tube defects, and folic acid. Am J Hum Genet 1996; 58: 17–20.

    PubMed  CAS  Google Scholar 

  70. Boushey CJ, Beresford SAA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: probable benefits of increasing folic acid intakes. JAMA 1995; 274: 1049–57.

    Article  PubMed  CAS  Google Scholar 

  71. Robinson K, Arheart K, Refsum H et al. Low circulating folate and vitamin B6 concentrations. Risk factors for stroke, peripheral vascular disease, and coronary artery disease. Circulation 1998; 97: 437–43.

    Article  PubMed  CAS  Google Scholar 

  72. Rimm EB, Willet WC, Hu FB et al. Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women. JAMA 1998; 279: 359–64.

    Article  PubMed  CAS  Google Scholar 

  73. Folsom AR, Nieto J, McGovern PG et al. Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymorphisms, and B vitamins. Circulation 1998; 98: 204–10.

    Article  PubMed  CAS  Google Scholar 

  74. Brattstrom L, Stavenow L, Galvard H et al. Pyridoxine reduces cholesterol and low-density lipoprotein and increases antithrombin III activity in 80-year old man with low plasma pyridoxal 5’-phosphate. Scand J Clin Lab Invest 1990; 50: 873–7.

    Article  PubMed  CAS  Google Scholar 

  75. Turner RC, Matthews DR, Lang DA et al. Is vitamin B6 an antithrombotic agent? Lancet 1981; 317: 1299–1301.

    Article  Google Scholar 

  76. Subbarao K, Kuchibhotla J, Kakkar VV. Pyridoxal 5’-phosphate: a new physiological inhibitor of blood coagulation and platelet function. Biochem Pharmacol 1979; 28: 531–4.

    Article  CAS  Google Scholar 

  77. Clarke R. An overview of the homocysteine lowering clinical trials. In: Robinson K, editor. Homocysteine and vascular disease. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1999: 413–429.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boers, G.H.J., Yap, S., Naughten, E., Wilcken, B. (2000). The Treatment of High Homocysteine Concentrations in Homocystinuria: Biochemical Control in Patients and Their Vascular Outcome. In: Robinson, K. (eds) Homocysteine and Vascular Disease. Developments in Cardiovascular Medicine, vol 230. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1789-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1789-2_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5431-9

  • Online ISBN: 978-94-017-1789-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics