Skip to main content

Molecular Biology of Cystathionine β-Synthase: Interrelationships with Homocysteine, Pyridoxine, and Vascular Disease

  • Chapter
Book cover Homocysteine and Vascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 230))

  • 135 Accesses

Summary

Cystathionine β-synthase (CBS) catalyzes the condensation of homocysteine with serine to form cystathionine, an irreversible step in the biosynthesis of cysteine. This reaction plays a key role in the determination of plasma homocysteine levels. Individuals lacking CBS activity (classical CBS deficiency or homocystinuria) have extremely elevated plasma homocysteine levels and have severe arteriosclerosis at relatively young ages. These findings led to the initial interest in homocysteine as a risk factor for vascular disease. In this chapter we will examine various aspects of CBS and CBS deficiency. We will review CBS enzymology, regulation, and the relationship between CBS and pyridoxine. In addition, we will discuss the molecular genetics of CBS deficiency and how mutations in CBS affect plasma homocysteine in the heterozygous and homozygous state. Finally, we will discuss the potential of drugs targeted at CBS to control plasma homocysteine levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carson NAJ, Neill DW. Metabolic abnormalities detected in a survey of mentally backward individuals in Northern Ireland. Arch Dis Childh 1962; 37: 505–13.

    Article  PubMed  CAS  Google Scholar 

  2. Gerritsen T, Vaughn JG, Waisman HA. The identification of homocystine in the urine. Biochem Biophys Res Commun 1962; 9: 493–96.

    Article  PubMed  CAS  Google Scholar 

  3. Schimke NR, McKusick VA, Huang Th, Pollack AD. Homocystinuria. A study of 20 families with 38 affected members. JAMA 1965; 193: 711–19.

    Article  PubMed  CAS  Google Scholar 

  4. Fowler B, Jakobs C. Post-and prenatal diagnostic methods for the homocystinurias. Eur J Pediat 1998; 157: S88–93.

    Article  Google Scholar 

  5. Mudd SH, Finkelstein JD, Irreverre F, Laster L. Homocystinuria: an enzymatic defect. Science 1964; 143: 1443–45.

    Article  PubMed  CAS  Google Scholar 

  6. Mudd S, Finkelstein J, Irreverre F, Laster L. Transsulfuration in mammals: microassays and tissue distributions of three enzymes of the pathway. J Biol Chem 1965; 240: 4382–92.

    PubMed  CAS  Google Scholar 

  7. Uhlendorf BW, Mudd SH. Cystathionine synthase in tissue culture derived from human skin: enzyme defect in human fibroblasts. Science 1968; 160: 1007–09.

    Article  PubMed  CAS  Google Scholar 

  8. Goldstein JL, Cambell B, Gartler S. Cystathionine synthase activity in human lymphocytes: induction by phytohemaglutinin. J Clin Invest 1972; 51: 1034–37.

    Article  PubMed  CAS  Google Scholar 

  9. McKusick VA, Hall JG, Char F. The clinical and genetic characteristics of homocystinuria. In: Carson NAJ, Raine DN, editors. Inherited disorders of sulfur metabolism. London: Churchill Livingstone Ltd, 1971: 179–203.

    Google Scholar 

  10. Wicken B, Turner G. Homocystinuria in New South Wales. Arch Dis Childh 1978; 53: 242–45.

    Article  Google Scholar 

  11. Il. Boers GHJ, Polder TW, Cruysberg JRM, et al. Homocystinuria versus Marfan’s syndrome: the therapeutic relevance of the differential diagnosis. Neth J Med 1984; 27: 206–12.

    Google Scholar 

  12. de Franchis R, Sperandeo MP, Sebastio G, Andria G. Clinical aspects of cystathionine 13- synthase deficiency: how wide is the spectrum? Eur J Pediat 1998;157 Suppl:S67–70.

    Google Scholar 

  13. Mudd SH, Levy HL, Skovby F. Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular basis of inherited disease. 7th ed. New York: McGraw-Hill Book Co, 1995: 1279–327.

    Google Scholar 

  14. Cruysberg JRM, Boers GHJ, Trijbels JMF, Deutman AF. Delay in diagnosis of homocystinuria: retrospective study of consecutive patients. Br Med J 1996; 313: 1037–40.

    Article  CAS  Google Scholar 

  15. Barber GW, Spaeth GL. The successful treatment of homocystinuria with pyridoxine. J Pediatr 1969; 75: 463–78.

    Article  PubMed  CAS  Google Scholar 

  16. Fowler B. Recent advances in the mechanism of pyridoxine-responsive disorders. J lnher Metab Dis 1985; 8 (Suppl. 1): 76–83.

    Article  CAS  Google Scholar 

  17. Mudd SH, Skovby F, Levy HL, et al. The natural history of homocystinuria due to cystathionine ß-synthase deficiency. Am J Hum Genet 1985; 37: 1–31.

    PubMed  CAS  Google Scholar 

  18. Gaull GE, Rassin DK, Sturman JA. Enzymatic and metabolic studies of homocystinuria: effects of pyridoxine. Neuropaediatrie 1969; 1: 199–226.

    Article  CAS  Google Scholar 

  19. Mudd SH, Edwards WA, Loeb PM, Brown MS, Laster L. Homocystinuria due to cystathionine synthase deficiency. The effect of pyridoxine. J Clin Invest 1970; 49: 176273.

    Google Scholar 

  20. Lipson MH, Kraus J, Rosenberg LE. Affinity of cystathionine I3-synthase for pyridoxal 5~ -phosphate in cultured cells. J Clin Invest 1980; 66: 188–93.

    Article  PubMed  CAS  Google Scholar 

  21. Lipson MH, Kraus J, Solomon L.R, Rosenberg LE. Depletion of cultured human fibroblasts of pyridoxal 5’-phosphate: effect on activities of aspartate aminotransferase, alanine aminotransferase, and cystathionine ß-synthase. Arch Biochem Biophys 1980; 204: 486–93.

    Article  PubMed  CAS  Google Scholar 

  22. Uhlendorf BW, Conerly EB, Mudd SH. Homocystinuria: studies in tissue culture. Pediat Res 1973; 7: 645–58.

    Article  PubMed  CAS  Google Scholar 

  23. Fowler B, Kraus J, Packman S, Rosenberg LE. Homocystinuria: evidence for three distinct classes of cystathionine 13-synthase mutants in cultured fibroblasts. J Clin Invest 1978; 61: 645–53.

    Article  PubMed  CAS  Google Scholar 

  24. Walter JH, Wraith JE, White FJ, Bridge C, Till J. Strategies for the treatment of cystathionine ß-synthase deficiency: the experience of the Willink Biochemical Genetics Unit over the past 30 years. Eur J Pediat 1998;157 Suppl:S71–S76.

    Google Scholar 

  25. Wilcken DEL, Wilcken B. The natural history of vascular disease in homocystinuria and the effects of treatment. J Inher Metab Dis 1997; 20: 295–300.

    Article  PubMed  CAS  Google Scholar 

  26. Naughten ER, Yap S, Mayne PD. Newborn screening for homocystinuria: Irish and world experience. Eur J Pediat 1998;157 Suppl:S84–87.

    Google Scholar 

  27. Stabler SP, Marcell PD, Podell ER, Allen RH, Savage DG, Lindenbaum J. Elevation of total homocysteine in the serum of patients with cobalamin or folate deficiency detected by capillary gas chromatography-mass spectrometry. J Clin Invest 1988; 81: 466–74.

    Article  PubMed  CAS  Google Scholar 

  28. Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem 1990; 1: 228–37.

    Article  PubMed  CAS  Google Scholar 

  29. Löhrer FMT, Schwab R, Angst CP, Haefeli WE, Fowler B. Influence of Sadenosylmethionine administration on S-adenosylhomocysteine, homocysteine and 5methyltetrahydrofolate in healthy humans. J Pharmacol Exper Therapeut 1997; 292: 84550.

    Google Scholar 

  30. Finkelstein JD. Control of sulfur metabolism. In: Oldfield JE, Muth OH, editors. Sulfur in nutrition. Westport, CT: Avi Press, 1970: 46–60.

    Google Scholar 

  31. Finkelstein JD. Regulation of methionine metabolism in mammals. In: Usdin E, Borchardt RT, Creveling CR, editors. Transmethylation. New York: Elsevier/North-Holland, 1979: 49–58.

    Google Scholar 

  32. Finkelstein JD, Martin JJ. Methionine metabolism in mammals. Adaptation to methionine excess. J Biol Chem 1986; 261: 1582–87.

    PubMed  CAS  Google Scholar 

  33. Finkelstein JD, Mudd SH. Transsulfuration in mammals. The methionine sparing effect of cystine. J Biol Chem 1967; 242: 873–80.

    PubMed  CAS  Google Scholar 

  34. Selim AS, Greenberg DM. An enzyme that synthesizes cystathionine and deaminates L-serine. J Biol Chem 1959; 234: 1474–80.

    PubMed  CAS  Google Scholar 

  35. Kraus JP, Le K, Swaroop M, et al. Human cystathionine ß-synthase cDNA: sequence, alternative splicing and expression in cultured cells. Hum Mol Genet 1993;2(10):163338.

    Google Scholar 

  36. Skovby F, Kraus JP, Rosenberg LE. Homocystinuria: biogenesis of cystathioninc ßsynthase subunits in cultured fibroblasts and in an in vitro translation system programmed with fibroblast messenger RNA. Am J Hum Genet I 984;36(2):452–59.

    Google Scholar 

  37. Skovby F, Kraus JP, Rosenberg LE. Biosynthesis and proteolytic activation of cystathionine ß-synthase in rat liver. J Biol Chem 1984; 259 (1): 588–93.

    PubMed  CAS  Google Scholar 

  38. Shan X, Kruger WD. Correction of disease-causing CBS mutations in yeast. Nat Genet 1998; 19: 91–3.

    Article  PubMed  CAS  Google Scholar 

  39. Kery V, Poneleit L, Kraus JP. Trypsin cleavage of human cystathionine ß-synthase into an evolutionarily conserved active core: structural and functional consequences. Arch Biochem Biophysl998;355(2):222–32.

    Google Scholar 

  40. Isupov MN, Antson AA, Dodson EJ, et al. Crystal structure of tryptophanase. J Mol Biol 1998; 276 (3): 603–23.

    Article  PubMed  CAS  Google Scholar 

  41. Zubay G. Biochemistry. Reading, MA: Addison-Wesley Publishing, Inc, 1989: 202–07.

    Google Scholar 

  42. Kery V, Bukovska G, Kraus JP. Transsulfuration depends on heme in addition to pyridoxal 5’-phosphate. Cystathionine $3-synthase is a heme protein. J Biol Chem 1994; 269 (41): 25283–88.

    PubMed  CAS  Google Scholar 

  43. Ishihara S, Morohashi K, Sadano H, Kawabata S, Gotoh O, Omura T. Molecular cloning and sequence analysis of cDNA coding for rat liver hemoprotein H-450. J Biochem 1990; 108 (6): 899–902.

    PubMed  CAS  Google Scholar 

  44. Taoka S, Ohja S, Shan X, Kruger WD, Banerjee R. Evidence of heme-mediated redox regulation of human cystathionine ß-synthase activity. J Biol Chem 1998 (in press).

    Google Scholar 

  45. Roper MD, Kraus JP. Rat cystathionine ß-synthase: expression of four alternatively spliced isoforms in transfected cultured cells. Arch Biochem Biophys 1992; 298 (2): 51421

    Article  Google Scholar 

  46. Chasse JF, Paly E, Paris D, et al. Genomic organization of the human cystathionine ßsynthase gene: evidence for various cDNAs. Biochem Biophys Res Commun 1995; 211 (3): 826–32.

    Article  PubMed  CAS  Google Scholar 

  47. Chasse JF, Paul V, Escanez R, Kamoun P, London J. Human cystathionine ß-synthase: gene organization and expression of different 5’ alternative splicing. Mamm Genome 1997; 8 (12): 917–21.

    Article  PubMed  CAS  Google Scholar 

  48. de Franchis R, Kozich V, McInnes RR, Kraus JP. Identical genotypes in siblings with different homocystinuric phenotypes: identification of three mutations in cystathionine ßsynthase using an improved bacterial expression system. Hum Mol Genet 1994; 3 (7): 1103–08.

    Article  PubMed  Google Scholar 

  49. Sebastio G, Sperandeo, M.P., Panico, M., de Franchis, R., Kraus, J.P., Andria, G. The molecular basis of homocystinuria due to cystathionine ß-synthase deficiency in Italian families, and report of four novel mutations. Am J Hum Genet 1995; 56: 1324–33.

    PubMed  CAS  Google Scholar 

  50. Kozich V, de Franchis R, Kraus JP. Molecular defect in a patient with pyridoxine-responsive homocystinuria. Hum Mol Genet 1993; 2 (6): 815–16.

    Article  PubMed  CAS  Google Scholar 

  51. Kluijtmans L. Molecular genetic analysis in hyperhomocysteinemia. Nijmegen: University of Nijmegen, 1998: 190.

    Google Scholar 

  52. Marble M, Geraghty MT, de Franchis R, Kraus JP, Valle D. Characterization of a cystathionine ß-synthase allele with three mutations in cis in a patient with B6 nonresponsive homocystinuria. Hum Mol Genet 1994; 3 (10): 1883–86.

    Article  PubMed  CAS  Google Scholar 

  53. Shih VE, Fringer JM, Mandell R, et al. A missense mutation (I278T) in the cystathionine ß-synthase gene prevalent in pyridoxine-responsive homocystinuria and associated with mild clinical phenotype. Am J Hum Genet 1995; 57 (1): 34–9.

    PubMed  CAS  Google Scholar 

  54. Kruger WD, Cox DR. A yeast assay for functional detection of mutations in the human cystathionine ß-synthase gene. Hum Mol Genet 1995;4(7):1 155–61.

    Google Scholar 

  55. Kim CE, Gallagher PM, Guttormsen AB, et al. Functional modeling of vitamin responsiveness in yeast: a common pyridoxine-responsive cystathionine ß-synthase mutation in homocystinuria. Hum Mol Genet 1997; 6 (13): 2213–21.

    Article  PubMed  CAS  Google Scholar 

  56. Kozich V, Kraus JP. Screening for mutations by expressing patient cDNA segments in E. coli: homocystinuria due to cystathionine ß-synthase deficiency. Hum Mutat 1992; 1 (2): 113–23.

    Article  PubMed  CAS  Google Scholar 

  57. Sperandeo MP, Panico M, Pepe A, et al. Molecular analysis of patients affected by homocystinuria due to cystathionine ß-synthase deficiency: Report of a new mutation in exon 8 and a deletion in intron 11. J Inherit Metab Dis 1995; 18 (2): 211–14.

    Article  PubMed  CAS  Google Scholar 

  58. Hu FL, Gu Z, Kozich V, Kraus JP, Ramesh V, Shih VE. Molecular basis of cystathionine ß-synthase deficiency in pyridoxine responsive and nonresponsive homocystinuria. Hum Mol Genet 1993; 2 (11): 1857–60.

    Article  PubMed  CAS  Google Scholar 

  59. Dawson PA, Cox AJ, Emmerson BT, Dudman NP, Kraus JP, Gordon RB. Characterisation of five missense mutations in the cystathionine ß-synthase gene from three patients with B6-nonresponsive homocystinuria. Eur J Hum Genet 1997; 5 (1): 15–21.

    PubMed  CAS  Google Scholar 

  60. Kraus JP. Komrower Lecture. Molecular basis of phenotype expression in homocystinuria. J Inherit Metab Dis 1994; 17 (4): 383–90.

    Article  PubMed  CAS  Google Scholar 

  61. Aral B, Coude M, London J, et al. Two novel mutations (K384E and L539S) in the C-terminal moiety of the cystathionine 0-synthase protein in two French pyridoxine-responsive homocystinuria patients. Hum Mutat 1997; 9 (1): 81–2.

    Article  PubMed  CAS  Google Scholar 

  62. Tsai MY, Wong PW, Garg U, Hanson NQ, Schwichtenberg K. Identification of a splice site mutation in the cystathionine ß-synthase gene resulting in variable and novel splicing defects of pre-mRNA. Biochem Mol Med 1997; 61 (1): 9–15.

    Article  PubMed  CAS  Google Scholar 

  63. Kozich V, Janosik M, Sokolova J, et al. Analysis of CBS alleles in Czech and Slovak patients with homocystinuria: report on three novel mutations E176K, W409X and 1223 + 37 de199. J Inherit Metab Dis 1997; 20 (3): 363–66.

    Article  PubMed  CAS  Google Scholar 

  64. Watanabe M, Osada J, Aratani Y, et al. Mice deficient in cystathionine 13-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci USA 1995; 92 (5): 1585–89.

    Article  PubMed  CAS  Google Scholar 

  65. Gallagher PM, Ward P, Tan S, et al. High frequency of cystathionine ß-synthase mutation g307s in Irish homocystinuria patients. Hum Mutat 1995; 6: 177–80.

    Article  PubMed  CAS  Google Scholar 

  66. Tsai MY, Bignell MK, Schwichtenberg KA, Hanson NQ. High prevalence of a mutation in the cystathionine 13-synthase gene. Am J Hum Genet 1996; 59 (6): 1262–67.

    PubMed  CAS  Google Scholar 

  67. Mudd SH, Havlik R, Levy HL, McKusick VA, Feinleib M. A study of cardiovascular risk in heterozygotes for homocystinuria. Am J Hum Genet 1981; 33: 883–93.

    PubMed  CAS  Google Scholar 

  68. Swift M, Morrell D. Cardiovascular risk in homocystinuria family members. Am J Hum Genet. 1982; 34: 1016–18.

    PubMed  CAS  Google Scholar 

  69. Mudd SH, Havlik R, Levy HL, McKusick VA, Feinleib M. Cardiovascular risk in heterozygotes for homocystinuria. Am J Hum Genet. 1982; 34: 1018–21.

    PubMed  CAS  Google Scholar 

  70. Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B, Graham I. Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 1991; 324: 1149–55.

    Article  PubMed  CAS  Google Scholar 

  71. Rubba P, Faccenda F, Pauciullo P, et al. Early signs of vascular disease in homocystinuria–a noninvasive study by ultrasound methods in eight families with cystathionine-I3- synthase deficiency. Metabolism 1990; 39: 1191–95.

    Article  PubMed  CAS  Google Scholar 

  72. Celermajer DS, Sorensen K, Ryalls M, et al. Impaired endothelial function occurs in the systemic arteries of children with homozygous homocystinuria but not in their heterozygous parents. J Am Coll Cardiol 1993; 22: 854–58.

    Article  PubMed  CAS  Google Scholar 

  73. Devalk H W, Vaneeden MKG, Banga JD, et al. Evaluation of the presence of premature atherosclerosis in adults with heterozygosity for cystathionine-ß-synthase deficiency. Stroke 1996; 27: 1134–36.

    CAS  Google Scholar 

  74. Fleisher LD, Tallan HH, Beratis NG, Hirschhorn K, Gaull GE. Cystathionine synthase deficiency: heterozygote detection using cultured skin fibroblasts. Biochem Biophys Res Comm 1973 55: 38–45.

    Article  PubMed  CAS  Google Scholar 

  75. Bittles AH, Carson NAJ. Tissue culture techniques as an aid to prenatal diagnosis and genetic counseling in homocystinuria. J Med Genet 1973; 10: 120–21.

    Article  PubMed  CAS  Google Scholar 

  76. Bittles AH, Carson NAJ. Homocystinuria: studies on cystathionine ß-synthase, Sadenosylmethionine synthetase and cystathionase activities in skin fibroblasts. J Inher Metab Dis 1981; 4: 3–6.

    Article  PubMed  CAS  Google Scholar 

  77. Sartorio R, Carrozzo R, Corbo L, Andria G. Protein-bound plasma homocyst(e)ine and identification of heterozygotes for cystathionine-synthase deficiency. J Inher Metab Dis 1986; 9: 25–9.

    Article  PubMed  CAS  Google Scholar 

  78. Boers GHJ, Fowler B, Smals AGH, et al. Improved identification of heterozygotes for homocystinuria due to cystathionine 3-synthase deficiency by the combination of methionine loading and enzyme determination in cultured fibroblasts. Hum Genet 1985; 69: 164–69.

    Article  PubMed  CAS  Google Scholar 

  79. Nordstrom M, Kjellstrom T. Age dependency of cystathionine 3-synthase activity in human fibroblasts in homocyst(e)inemia and atherosclerotic vascular disease. Atherosclerosis 1992; 94: 213–21.

    Article  PubMed  CAS  Google Scholar 

  80. Steegers-Theunissen RP, Boers GH, Trijbels FJ, et al. Maternal hyperhomocysteinemia: a risk factor for neural-tube defects? Metabolism 1994; 43: 1475–80.

    Article  PubMed  CAS  Google Scholar 

  81. Tsai MY, Garg U, Key NS, Hanson NQ, Suh A, Schwichtenberg K. Molecular and biochemical approaches in the identification of heterozygotes for homocystinuria. Atherosclerosis 1996; 122: 69–77.

    Article  PubMed  CAS  Google Scholar 

  82. Laster L, Spaeth GL, Mudd SH, Finklestein JD. Homocystinuria due to cystathionine synthase deficiency. Combined clinical staff conference at the National Institutes of Health. Annals Int Med 1965; 63: 1117–42.

    Google Scholar 

  83. Gault G, Sturman JA, Schaffner F. Homocystinuria due to cystathionine synthase deficiency: enzymatic and ultrastructural studies. J Pediat 1974; 84: 381–90.

    Article  Google Scholar 

  84. White HH, Araki S, Thompson HL, Rowland LP, Cowen D. Homocystinuria. Trans Am Neurol Assoc 1964; 89: 24–7.

    PubMed  CAS  Google Scholar 

  85. Brenton DP, Cusworth DC, Gaull GE. Homocystinuria: metabolic studies of 3 patients. J Pediatr 1965; 67: 58.

    Article  PubMed  CAS  Google Scholar 

  86. Kennedy C, Shih VE, Rowland LP. Homocystinuria: a report in two siblings. Pediatrics 1965; 36: 736–41.

    PubMed  CAS  Google Scholar 

  87. Dunn HG, Perry TL, Dolman CL. Homocystinuria, a recently discovered cause of mental defect and cerebrovascular thrombosis. Neurology 1966; 16: 407–20.

    Article  PubMed  CAS  Google Scholar 

  88. Chase HP, Goodman SI, O’Brian D. Treatment of homocystinuria. Arch Dis Childh 1967; 42: 514–20.

    Article  PubMed  CAS  Google Scholar 

  89. Laster L, Mudd SH, Finkelstein JD, Irreverre F. Homocystinuria due to cystathionine synthase deficiency; the metabolism of L-methionine. J Clin Invest 1965; 44: 1708–19.

    Article  PubMed  CAS  Google Scholar 

  90. Sardharwalla IB Fowler B, Robins AJ, Komrower GM Detection of heterozygotes for homocystinuria. Study of sulfur-containing amino acids in plasma and urine after Lmethionine loading. Arch Dis Childh 1974;49:553–59

    Google Scholar 

  91. McGill JJ, Mettler G, Rosenblatt DS, Scriver CR. Detection of heterozygotes for recessive alleles. Homocyst(e)inemia: paradigm of pitfalls in phenotypes. Am J Med Genet 1990; 36: 45–52.

    Article  PubMed  CAS  Google Scholar 

  92. Murphy-Chutorian DR, Wexman MP, Grieco AJ, et al. Methionine intolerance: a possible risk factor for coronary artery disease. J Am Coll Cardiol 1985; 6: 725–30.

    Article  PubMed  CAS  Google Scholar 

  93. Brattstrom L, Israelsson B, Norrving B, et al. Impaired homocysteine metabolism in early onset cerebral and peripheral occlusive arterial disease. Effects of pyridoxine and folic acid treatment. Atherosclerosis 1990; 81: 51–60.

    Article  PubMed  CAS  Google Scholar 

  94. Löhrer FMT, Angst CP, Brown G, Frick G, Haefeli WE, Fowler B. The effect of methionine loading on 5-methyltetrahydrofolate, S-adenosylmethionine and Sadenosylhomocysteine in plasma of healthy humans. Clin Sci 1996; 91: 79–86.

    Google Scholar 

  95. Boddie AM, Steen MT, Sullivan KM, et al. Cystathionine- 3-synthase deficiency: detection of heterozygotes by the ratios of homocysteine to cysteine and folate Metabolism 1998; 47: 207–11.

    CAS  Google Scholar 

  96. Sperandeo MP, Candito M, Sebastio G, et al. Homocysteine response to methionine challenge in four obligate heterozygotes for homocystinuria and relationship with cystathionine ß-synthase mutations. J Inher Met Dis 1996; 19: 351–56.

    Article  CAS  Google Scholar 

  97. Dawson PA, Kraus JP, Cochran DAE, Dudman NPB, Emmerson BT, Gordon RB. Variable hyperhomocysteinemia phenotype in heterozygotes for the Gly307Ser mutation in cystathionine 3-synthase. Austral New Zealand J Med 1996; 26: 180–85.

    Article  CAS  Google Scholar 

  98. Boers GHJ, Smals AGH, Trijbels FJM, Fowler B, Bakkeren AJM, Schoonderwaldt HC, Kleijer, WJ Kloppenborg PWC. Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N Engl J Med 1985; 313: 709–15.

    Article  PubMed  CAS  Google Scholar 

  99. Dudman NPB, Wilcken DEL, Wang J, Lynch JF, Macey D Lundberg P. Disordered methionine homocysteine metabolism in premature vascular disease–its occurrence cofactor therapy and enzymology. Arterio Thromb 1993; 13: 1253–60.

    Article  CAS  Google Scholar 

  100. Kozich V, Kraus E, de Franchis R, Fowler B, Boers GHJ, Graham I, Kraus JP. Hyperhomocysteinemia in premature arterial disease: examination of cystathionine ßsynthase alleles at the molecular level. Hum Mol Genet 1995; 4: 623–29.

    Article  PubMed  CAS  Google Scholar 

  101. Kluijtmans LAJ, van den Heuvel LPWJ, Boers GHJ, et al. Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease. Am J Hum Genet 1996; 58: 35–41.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kruger, W.D., Fowler, B. (2000). Molecular Biology of Cystathionine β-Synthase: Interrelationships with Homocysteine, Pyridoxine, and Vascular Disease. In: Robinson, K. (eds) Homocysteine and Vascular Disease. Developments in Cardiovascular Medicine, vol 230. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1789-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1789-2_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5431-9

  • Online ISBN: 978-94-017-1789-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics