Skip to main content

Homocysteine as a Risk Factor for Cardiovascular Disease in Women

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 230))

Summary

Elevated plasma levels of total homocysteine are considered a risk factor for cardiovascular disease (CVD). Levels are generally lower in women than men, and in premenopausal than postmenopausal women. Differences in circulating estrogens may be partly responsible for these observations.

The present chapter reviews studies that have investigated associations of homocysteine with risk of CVD by gender or by menopausal status. Furthermore, the evidence for a homocysteine-lowering effect of estrogen replacement therapy in postmenopausal women is discussed.

Six out of 10 of the epidemiologic studies that included both men and women found elevated homocysteine to be a stronger risk factor in women than in men. Several of these studies estimated that the risk was about twice as high in women as in men. Three studies observed no effect modification, and one a weaker effect in women. Two studies that consisted (almost) entirely of women observed a direct association of elevated homocysteine with CVD risk as well, comparable to effects in male populations.

The stronger effect among women in some studies may be explained by aspects of the study design, such as young age at inclusion, or aspects of the data-analysis, such as use of an overall instead of a gender-specific cutoff-point. Also, one cannot exclude the possibility that women are somehow more susceptible to detrimental effects of homocysteine than men, although there is clear evidence from other studies that estrogens have a “protective” effect on the vascular wall and favorable effect on hemostasis.

Elevation of homocysteine is found to be a risk factor in populations of both young and elderly women, but only few studies have compared the relation between homocysteine and risk of CVD among premenopausal and postmenopausal women. Generally, it appears that women are not protected against CVD before the menopause. Several, mostly uncontrolled, intervention studies have indicated that estrogen replacement therapy, either alone, sequentially or continuously combined with progestogen, lowers homocysteine by about 11–13% during postmenopausal years.

In conclusion, we should consider elevated homocysteine as an equally strong, potential risk factor for CVD in both men and women, before and after the menopause. Results from randomized trials of B-vitamins, that are currently being conducted among large populations of men and women, will tell us whether homocysteine-lowering gives a CVD benefit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boushey CJ, Beresford SAA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 1995; 274: 1049–57.

    Article  PubMed  CAS  Google Scholar 

  2. Refsum H, Ueland PM, Nygârd O, Vollset MD. Homocysteine and cardiovascular disease. Annu Rev Medicine 1998; 49: 31–62.

    Article  CAS  Google Scholar 

  3. Stampfer MJ, Verhoef P. Prospective studies of homocysteine and cardiovascular disease. In: Graham I, Refsum H, Rosenberg 11–1, Ueland PM, Shuman JM, eds. Homocysteine Metabolism: From Basic Science to Clinical Medicine. Kluwer Academic Publishers, Boston, USA 1997, p. 239–44.

    Google Scholar 

  4. Wald NJ, Watt HC, Law MR, Weir DG, McPartlin J, Scott JM. Homocysteine and ischemic heart disease: results of a prospective study with implications regarding prevention. Arch Intern Med 1998; 158: 862–7.

    Article  PubMed  CAS  Google Scholar 

  5. Folsom AR, Nieto FJ, McGovern PG et al. Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymorphisms, and B vitamins. The Atherosclerosis Risk in Communities (ARIC) Study. Circulation 1998; 98: 204–10.

    Article  PubMed  CAS  Google Scholar 

  6. Evans RW, Shaten BJ, Hempel JD, Cutler JA, Kuller LH. Homocyst(e)ine and risk of cardiovascular disease in the Multiple Risk Factor Intervention Trial. Arterioscler Thromb Vasc Biol 1997; 17: 1947–53.

    Article  PubMed  CAS  Google Scholar 

  7. Selhub J, Jacques PF, Wilson PWF, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993; 270: 2693–8.

    Article  PubMed  CAS  Google Scholar 

  8. Jacobsen DW, Gatautis VJ, Green R et al. Rapid HPLC determination of total homocysteine and other thiols in serum and plasma: sex differences and correlation with cobalamin and folate concentrations in healthy subjects. Clin Chem 1994; 40: 873–81.

    PubMed  CAS  Google Scholar 

  9. Brattström L, Lindgren A, Israelsson B, Andersson A, Hultberg B. Homocysteine and cysteine: determinants of plasma levels in middle-aged and elderly subjects. J Intern Med 1994; 236: 633–41.

    Article  PubMed  Google Scholar 

  10. Nygârd O, Vollset SE, Refsum H et al. Total plasma homocysteine and cardiovascular risk profile: The Hordaland homocysteine study. JAMA 1995; 274: 1526–33.

    Article  PubMed  Google Scholar 

  11. Lussier-Cacan S, Xhignesse M, Piolot A, Selhub J, Davignon J, Genest J Jr. Plasma total homocysteine in healthy subjects: sex specific relation with biological traits. Am J Clin Nutr 1996; 64: 587–3.

    PubMed  CAS  Google Scholar 

  12. Andersson A, Brattström L, lsraelsson B, Isaksson A, Hamfelt A, Hultberg B. Plasma homocysteine before and after methionine loading with regard to age, gender and menopausal status. Eur J Clin Invest 1992; 22: 79–87.

    Article  PubMed  CAS  Google Scholar 

  13. Kang SS, Wong PW, Cook HY, Norusis M, Messer JV. Protein-bound homocyst(e)ine. A possible risk factor for coronary artery disease. J Clin Invest 1986; 77: 1482–6.

    Article  PubMed  CAS  Google Scholar 

  14. Boers GH, Smals AG, Trijbels FJ, Leermakers Al, Kloppenborg PW. Unique efficiency of methionine metabolism in premenopausal women may protect against vascular disease in the reproductive years. J Clin Invest 1983; 72: 1971–6.

    Article  PubMed  CAS  Google Scholar 

  15. Brattström LE, Hultberg BL, Hardebo JE. Folic acid responsive post-menopausal homocysteinemia. Metabolism 1985; 34: 1073–7.

    Article  PubMed  Google Scholar 

  16. Blom HJ, Boers GH, Van den Elzen JP, Van Roessel JJ, Trijbels JM, Tangerman A. Differences between premenopausal women and young men in the transamination pathway of methionine catabolism, and the protection against vascular disease. Eur J Clin Invest 1988; 18: 633–8.

    Article  PubMed  CAS  Google Scholar 

  17. Wouters MGAJ, Moorrees MThEC, Van der Mooren MJ, et al. Plasma homocysteine and menopausal status. Eur J Clin Invest 1995; 25: 801–5.

    Article  PubMed  CAS  Google Scholar 

  18. Gensini GF, Micheli S, Prisco D, Abbate R. Menopause and risk of cardiovascular disease. Thromb Res 1996; 84: 1–19.

    Article  PubMed  CAS  Google Scholar 

  19. Verhoef P. Homocysteine, B-vitamins and cardiovascular disease: epidemiologic evidence. Dissertation, Agricultural University, Wageningen, The Netherlands, 1996.

    Google Scholar 

  20. Mudd SH, Pool JR. Labile methyl balance for normal humans on various dietary regimens. Metabolism 1975; 24: 721–3.

    Article  PubMed  CAS  Google Scholar 

  21. Kang SS, Wong PWK, Zhou J, Cook HY. Total homocyst(e)ine in plasma and amniotic fluid of pregnant women. Metabolism 1986; 35: 889–91.

    Article  PubMed  CAS  Google Scholar 

  22. Andersson A, Hultberg B, Brattström L, Isaksson A. Decreased serum homocysteine in pregnancy. Eur J Clin Chem Clin Biochem 1992; 30: 377–9.

    PubMed  CAS  Google Scholar 

  23. Steegers-Theunissen RPM, Boers GHJ, Steegers EAP, Trijbels FJM, Thomas CMG, Eskes TKAB. Effects of sub-50 oral contraceptives on homocysteine metabolism: a preliminary study. Contraception 1992; 45: 129–39.

    Article  PubMed  CAS  Google Scholar 

  24. Beaumont V, Malinow MR, Sexton G, Wilson D, Lemort N, Upson B, Beaumont JL. Hyperhomocyst(e)inemia, anti-estrogen antibodies and other risk factors for thrombosis in women on oral contraceptives. Atherosclerosis 1992; 94: 147–52.

    Article  PubMed  CAS  Google Scholar 

  25. Brattström L, Israelsson B, Olsson A, Andersson A, Hultberg B. Plasma homocysteine in women on oral oestrogen-containing contraceptives and in men with oestrogen-treated prostatic carcinoma. Scand J Clin Lab Invest 1992; 52: 283–7.

    Article  PubMed  Google Scholar 

  26. Giltay EJ, Hoogeveen EK, Elbers JMH, Gooren LJG, Asscheman H, Stehouwer CDA. Effects of sex steroids on plasma total homocysteine levels: a study in transsexual males and females. J Clin Endocrinol Metab 1998; 83: 550–3.

    Article  PubMed  CAS  Google Scholar 

  27. Malinow MR, Nieto JN, Szklo M, Chambless LE, Bond G. Carotid artery intimal-medial wall thickening and plasma homocyst(e)ine in asymptomatic adults. The Atherosclerosis Risk in Communities Study. Circulation 1993; 87: 1107–13.

    Article  PubMed  CAS  Google Scholar 

  28. Selhub J, Jacques PF, Bostom AG et al. Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med 1995; 332: 286–91.

    Article  PubMed  CAS  Google Scholar 

  29. Aronow WS, Ahn C. Assocation between plasma homocysteine and coronary artery disease in older persons. Am J Cardiol 1997; 80; 1216–18.

    Article  PubMed  CAS  Google Scholar 

  30. Robinson K, Mayer EL, Miller DP et al. Hyperhomocysteinemia and low pyridoxal phosphate. Common and independent reversible risk factors for coronary artery disease. Circulation 1995; 92: 2825–30.

    Article  PubMed  CAS  Google Scholar 

  31. Hopkins PN, Wu LL, Wu J et al. Higher plasma homocyst(e)ine and increased susceptibility to adverse effects of low folate in early familial coronary artery disease. Arterioscler Thromb Vasc Biol 1995; 15: 1314–20.

    Article  PubMed  CAS  Google Scholar 

  32. Den Heijer M, Koster T, Blom HJ et al. Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. N Engl J Med 1996; 334: 759–62.

    Article  Google Scholar 

  33. Graham IH, Daly LE, Refsum HM et al. Plasma homocysteine as a risk factor for vascular disease: The European Concerted Action Project. JAMA 1997; 277: 1775–81.

    Article  PubMed  CAS  Google Scholar 

  34. Schwartz SM, Siscovich DS, Malinow MR et al. Myocardial infarction in young women in relation to plasma total homocysteine, folate, and a common variant in the methylenetetrahydrofolate reductase gene. Circulation 1997; 96: 412–7.

    Article  PubMed  CAS  Google Scholar 

  35. Alfthan G, Pekkanen J, Jauhiainen M et al. Relation of serum homocysteine and lipoprotein(a) concentrations to atherosclerotic disease in a prospective Finnish population based study. Atherosclerosis 1994; 106: 9–19.

    Article  PubMed  CAS  Google Scholar 

  36. Petri M, Roubenoff R, Dallal GE, Nadeau MR, Selhub J, Rosenberg H. Plasma homocysteine as a risk factor for atherothrombotic events in systemic lupus erythematosus. Lancet 1996; 348: 1120–4.

    Article  PubMed  CAS  Google Scholar 

  37. Nygârd O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997; 337: 230–6.

    Article  PubMed  Google Scholar 

  38. Giles WH, Kittner SJ, Anda RA, Croft JB, Casper ML. Serum folate and risk for ischemic stroke. First National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Stroke 1995; 26: 1166–70.

    Article  PubMed  CAS  Google Scholar 

  39. Morrison HI, Schaubel D, Desmeules M, Wigle DT. Serum folate and risk of fatal coronary heart disease. JAMA 1996; 275: 1893–6.

    Article  PubMed  CAS  Google Scholar 

  40. Rimm EB, Willett WC, Hu FB et al. Folate and vitamin B-6 from diet and supplements in relation to risk of coronary heart disease among women. JAMA 1998; 279; 359–64.

    Article  PubMed  CAS  Google Scholar 

  41. Dudman NPB, Wilcken DEL, Wang J, Lynch JF, Macey D, Lundberg P. Disordered methionine/homocysteine metabolism in premature vascular disease. Its occurrence, cofactor therapy, and enzymology. Arterioscler Thromb 1993; 13: 1253–60.

    Article  PubMed  CAS  Google Scholar 

  42. Mijatovic V, Kenemans P, Jakobs C, Van Baal WM, Peters-Muller ER, Van der Mooren MJ. A randomized controlled study of the effects of 17beta-estradiol-dydrogesterone on plasma homocysteine in postmenopausal women. Obstet Gynecol 1998; 91: 432–6.

    Article  PubMed  CAS  Google Scholar 

  43. Mijatovic V, Kenemans P, Netelenbos C et al. Postmenopausal oral 17ß-estradiol continuously combined with dyhydrogesterone reduces fasting serum homocysteine levels. Fertil Steril 1998; 69: 876–82.

    Article  PubMed  CAS  Google Scholar 

  44. Van der Mooren MJ, Wouters MGAJ, Blom HJ, Schellekens LA, Eskes TKAB, Rolland R. Hormone replacement therapy may reduce high serum homocysteine in postmenopausal women. Eur J Clin Invest 1994; 24: 733–6.

    Article  PubMed  Google Scholar 

  45. Anker G, Lonning PE, Ueland PM, Refsum H, Lien EA. Plasma levels of the atherogenic amino acid homocysteine in post-menopausal women with breast cancer treated with tamoxifen. Int J Cancer 1995; 60: 365–8.

    Article  PubMed  CAS  Google Scholar 

  46. Boers G. Refinement of the methionine loading test. In: Robinson K ed. Homocysteinemia and vascular disease. Proceedings of an EC COMAC-Epidemiology Expert Group Workshop. Luxembourg: Commission of the European Communities, 1990: 61–6.

    Google Scholar 

  47. Silberberg J, Crooks R, Fryer J et al. Gender differences and other determinants of the rise in plasma homocysteine after L-methionine loading. Atherosclerosis 1997; 133: 105–10.

    Article  PubMed  CAS  Google Scholar 

  48. Hulley S, Grady D, Bush T et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. JAMA 1998; 280: 605–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verhoef, P. (2000). Homocysteine as a Risk Factor for Cardiovascular Disease in Women. In: Robinson, K. (eds) Homocysteine and Vascular Disease. Developments in Cardiovascular Medicine, vol 230. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1789-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1789-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5431-9

  • Online ISBN: 978-94-017-1789-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics