Skip to main content
  • 191 Accesses

Abstract

In this chapter the main factors influencing high temperature creep—fatigue crack growth in engineering materials are discussed. The significance of minimum to maximum load ratio R, frequency, environment and temperature are considered in turn. Transgranular cycle dependent and intergranular time dependent controlled cracking processes are identified. Conditions favouring each mechanism are clarified and it is shown that cumulative damage concepts can be applied to predict interaction effects. It is found that cyclic controlled processes are most likely to dominate at high frequencies and low R. Creep and environmental mechanisms, which are favoured at low frequencies, high temperatures and high R,are identified as contributing to the time dependent component of cracking. It is shown that these processes can enhance the crack growth per cycle significantly and reduce component lives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ponsford, J.S. and Waddington, G.K. (1984) Proc. AGARD Conf. Engine Cycle Durability by Analysis and Testing,Lisse, Netherlands, AGARD-CP-368, June 1984, paper 15.

    Google Scholar 

  2. ASTM (1987) Standard test method for measuring fatigue crack growth rates, Book of Standards, ASTM E647–86a, 03. 01, pp. 899–926.

    Google Scholar 

  3. Paris, P.C. and Erdogan, F (1963) A critical analysis of crack propagation laws. ASME, J. Basic Eng., 85, 528–534.

    Article  CAS  Google Scholar 

  4. Fuchs, H.O. and Stephens, R.I. (1980) Metals Fatigue in Engineering, Wiley, New York.

    Google Scholar 

  5. British Standards Institution (1994) Guide to methods for the assessment of the influence of crack growth on the significance of defects in components operating at high temperatures. BSPD 6539: 1994.

    Google Scholar 

  6. Ewalds, H.L. and Wanhill, R.J.H. (1985) Fracture Mechanics, Edward Arnold, London.

    Google Scholar 

  7. Tomkins, B. (1968) Fatigue crack propagation–an analysis. Phil. Mag., 18, 1041–1066.

    Article  CAS  Google Scholar 

  8. Forman, R.G., Kearney, V.E. and Engle, R.M. (1967) Numerical analysis of crack propagation in cyclic-loaded structures. ASME, J. Basic Eng., 89, 459–464.

    Article  Google Scholar 

  9. Elber, W. (1971) The significance of fatigue crack drive in damage tolerance in aircraft structures, ASTM STP 486, ASTM pp. 230–247.

    Google Scholar 

  10. Schijve, J. (1980) Prediction methods for fatigue crack growth in aircraft material, Fracture Mechanics: 12th Conf., ASTM STP 700, ASTM, pp. 3–34.

    Google Scholar 

  11. Webster, G.A. (1992) Role of neutron diffraction in engineering stress analysis, in Measurement of Residual and Applied Stress using Neutron Diffraction, (eds M.T. Hutchings and A.D. Krawitz) Kluwer Academic Publishers, Dordrecht, pp. 21–35.

    Chapter  Google Scholar 

  12. Stacey. A. and Webster, G.A. (1988) Influence of residual stress on fatigue crack growth in thick-walled cylinders, in Analytical and Experimental Methods of Residual Stress Effects in Fatigue, (eds R.L. Champoux, J.H. Underwood and J.A. Kapp), ASTM STP 1004, ASTM, pp. 37–53.

    Google Scholar 

  13. Dowling, N.E. (1976) Geometry effects and the I-integral approach to elastic-plastic fatigue crack growth, in Cracks and Fracture ASTM STP 601, ASTM, pp. 19–32.

    Google Scholar 

  14. Brose, W.R. and Dowling, N.E. (1979) Size effects on fatigue crack growth rate of type 304 stainless steel, in Elastic-Plastic Fracture, (eds J.D. Landes, J.A. Begley and G.A. Clarke), ASTM STP 668, ASTM, pp. 720–735.

    Google Scholar 

  15. ASTM (1987) Standard test method for J1 c, a measure of fracture toughness, Annual Book of Standards, ASTM E813–87, 03.01, pp. 968–990.

    Google Scholar 

  16. ASTM (1992) Standard test method for measurement of creep crack growth rates in metals, Annual Book of Standards, ASTM E1457–92, 03.01, 1031–1043.

    Google Scholar 

  17. Webster, G.A. (1992) Methods of estimating C’. Mater. High Temp., 10, 73–78.

    Google Scholar 

  18. Miller, K.J. (1984) The propagation behaviour of short fatigue cracks, in Subcritical Crack Growth due to Fatigue, Stress Corrosion and Creep, (ed. L.H. Larsson ), Elsevier Applied Science, London, pp. 151–166.

    Google Scholar 

  19. Tomkins, B. (1984) High strain fatigue, ibid, pp. 239–266.

    Google Scholar 

  20. Webster, G.A. (1987) High temperature fatigue crack growth in superalloy blade materials. Mater. Sci. Technol., 3, 716–726.

    CAS  Google Scholar 

  21. Sadananda, K. and Shahinian, P. (1979) A fracture mechanics approach to high temperature fatigue crack growth in Udimet 700. Eng. Fract. Mech., 11, 73–86.

    Google Scholar 

  22. Holdsworth, S.R. and Hoffelner, W. (1982) Fracture mechanics and crack growth in fatigue, in High Temperature Alloys for Gas Turbines, (eds R. Brunetaud et al.), Reidel Publishing Co., Dordrecht, pp. 345–368.

    Google Scholar 

  23. Viswanathan, R. (1989) Damage Mechanisms and Life Assessment of High-Temperature Components, ASM International, Metals Park, Ohio.

    Google Scholar 

  24. Ohtani, R., Kitamura, T., Nitta, A. and Kuwabara, K. (1988) High temperature low cycle fatigue crack propagation and life laws of smooth specimens derived from the crack propagation laws, in Low Cycle Fatigue, (eds H.D. Solomon, G.R. H.lford, L.R. Kaisand and B.N. Leis), ASTM STP 942, ASTM pp. 1163–1180.

    Google Scholar 

  25. Shahinian, P. and Sadananda, K. (1976) Crack growth behaviour under creep-fatigue conditions in alloy 718, in Proc. ASME-MPC-3 Symposium Creep-Fatigue Interaction, ASTM, pp. 365–390.

    Google Scholar 

  26. Pineau, A. (1984) High temperature fatigue: Creep-fatigue-oxidation interactions in relation to microstructure, in Subcritical Crack Growth due to Fatigue, Stress Corrosion and Creep, (ed. L.H. Larsson ), Elsevier Applied Science, London, pp. 483–530.

    Google Scholar 

  27. Ellison, E.G. (1984) Combined creep-fatigue-environment cracking, ibid, pp. 531–563.

    Google Scholar 

  28. Nikbin, K.M. and Webster, G.A. (1984) Creep-fatigue crack growth in a nickel base superalloy in Creep and Fracture of Engineering Materials and Structures, (eds B. Wilshire and D.R.J. Owen), Pineridge Press, Swansea, pp. 1091–1103.

    Google Scholar 

  29. Winstone, M.R., Nikbin, K.M. and Webster, G.A. (1985) Modes of failure under creep/ fatigue loading of a nickel-base superalloy. J. Mater. Sci., 20, 2471–2476.

    Article  CAS  Google Scholar 

  30. Dimopulos, V., Nikbin, K.M. and Webster, G.A. (1988) Influence of cyclic to mean load ratio on creep/fatigue crack growth. Met. Trans. A, 19A, 873–880.

    Google Scholar 

  31. Schijve, J. (1976) The stress ratio effect on fatigue crack growth in 2024-T3 Al clad and the relation to crack closure, Aerospace Eng. memo M-336, Delft University, Aug 1976.

    Google Scholar 

  32. Floreen, S. and Kane, R.H. (1979) An investigation of the creep—fatigue-environment interaction in a Ni-base superalloy. Fatigue Fract. Eng. Mater. Struct., 2, 401–412.

    Article  CAS  Google Scholar 

  33. Floreen, S. and Kane, R.H. (1979) Effects of environment on high-temperature fatigue crack growth in a superalloy. Met. Trans., 10A, pp. 1745–1751.

    Google Scholar 

  34. Gayda, J., Gabb, T.P. and Miner, R.V. (1988) Fatigue crack propagation of nickel base superalloys at 650 °C, in Low Cycle Fatigue, (eds H.D. Solomon, G.R. H.lford, L.R. Kaisand and B.N. Leis), ASTM STP 942, ASTM, pp. 293–309.

    Google Scholar 

  35. Nikbin, K.M. and Webster, G.A. (1988) Prediction of crack growth under creep—fatigue loading conditions, in Low Cycle Fatigue, (eds H.D. Solomon, G.R. H.lford, L.R. Kaisand and B.N. Leis), ASTM STP 942, ASTM, pp. 281–292.

    Google Scholar 

  36. Buchheim, G.M., Becht, C., Nikbin, K.M., Dimopulos, V., Webster, G.A. and Smith, D.J. (1989) Influence of aging on high temperature creep crack growth in type 304 H stainless steel, in Non-Linear Fracture Mechanics: Vol 1 Time Dependent Fracture, (eds A. Saxena, J.D. Landes and J.L. Bassani), A.TM STP 995, ASTM, pp. 153–172.

    Google Scholar 

  37. Gladwin, D.N., Miller, D.A. and Priest, R.H. (1989) Examination of the fatigue and creep-fatigue crack growth behaviour of aged 347 stainless steel weld metal at 650 ° C. Mater Sci, Technol., 5, 40–5I.

    CAS  Google Scholar 

  38. Austin, T.S.P. and Webster, G.A. (1993) Application of a creep—fatigue crack growth model to type 316 stainless steel, in Behaviour of Defects at High Temperatures, ESIS 15 (eds R.A. Ainsworth and R.P. Skelton ), Mechanical Engineering Publications, London, pp. 219–237.

    Google Scholar 

  39. Skelton, R.P., Beech, S.M., Holdsworth, S.R., Neate, G.J., Miller, D.A. and Priest, R.H. (1993) Round robin tests on creep—fatigue crack growth in a ferritic steel at 550° C, in Behaviour of Defects at High Temperatures, ESIS 15 (eds R.A. Ainsworth and R.P. Skelton ), Mechanical Engineering Publications, London, pp. 299–325.

    Google Scholar 

  40. Priest, R.H. and Miller, D.A. (1991) The assessment of creep—fatigue initiation and crack growth, in Creep in Structures, IUTAM Symposium Cracow/Poland 1990, (ed. M. Zyczkowski ), Springer-Verlag, Berlin, pp. 441–450.

    Google Scholar 

  41. Levaillant, C. and Pineau, A. (1982) Assessment of high temperature low cycle fatigue of austenitic stainless steels using intergranular damage as a correlating parameter in low cycle fatigue and life prediction (eds C. Amzallag et al.),ASTM STP 770, ASTM, pp. 169–193.

    Google Scholar 

  42. Skelton, R.P. (1993) Damage factors during high temperature fatigue crack growth, in Behaviour of Defects at High Temperatures, ESIS 15 (eds R.A. Ainsworth and R.P. Skelton ), Mechanical Engineering Publications, London, pp. 191–218.

    Google Scholar 

  43. Ainsworth, R.A. and Budden, P.J. (1993) Assessment of defects at high temperatures, the R5 procedures, in Behaviour of Defects at High Temperatures, ESIS 15 (eds R.A. Ainsworth and R.P. Skelton ), Mechanical Engineering Publications, London, pp. 453–465.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Webster, G.A., Ainsworth, R.A. (1994). Creep—fatigue crack growth. In: High Temperature Component Life Assessment. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1771-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1771-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4012-1

  • Online ISBN: 978-94-017-1771-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics