Skip to main content

Tableau Methods for Substructural Logics

  • Chapter
Book cover Handbook of Tableau Methods

Abstract

Over the last few decades a good deal of research in logic has been prompted by the realization that logical systems can be successfully employed to formalize and solve a variety of computational problems. Traditionally, the theoretical framework for most applications was assumed to be classical logic. However, this assumption often turned out to clash with researchers’ intuitions even in well-established areas of application. Let us consider, for example, what is probably the most representative of these application areas: logic programming The idea that the execution of a Prolog program is to be understood as a derivation in classical logic has played a key role in the development of the area. This interpretation is the leitmotiv of Kowalski’s well-known [1979], whose aim is described as an attempt ‘to apply the traditional methods of [classical] logic to contemporary theories of problem solving and computer programming’. However, here are some quotations which are clearly in conflict with the received view (and with each other) as to the correct interpretation of logic programs:

Relevance Logic not only shows promise as a standard for modular reasoning systems, but it has, in a sense, been already adopted by artificial intelligence researchers. The resolution method for Horn clauses appears to be based on classical logic, but procedural derivation (see [Kowalski, 1979]), the method actually used for logic programming, is not complete for classical logic, and is in fact equivalent to Relevance Logic.[...] the systems of modules which are actually used in computer science have the feature that relevance, not classical logic, provides a theory of their behaviour. [Carson, 1989, p.214]

According to the standard view, a logic program is a definite set of Horn clauses. Thus logic programs are regarded as syntactically restricted first-order theories within the framework of classical logic. Correspondingly, the proof-theory of logic programs is considered as a specialized version of classical resolution, known as SLD-resolution. This view, however, neglects the fact that a program clause a 0a l, a 2, ..., a n , is an expression of a fragment of positive logic [a subsystem of Intuitionistic Logic] rather than an implication formula of classical logic. The logical behaviour of such clauses is in no way related to any negation or complement operation. So (positive) logic programs are ‘sub-classical’. The classical interpretation seems to be a semantical overkill’ [Wagner, 1991, p.835].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. M. Abrusci. Noncommutative intuitionistic linear propositional logic. Zeitschr. f Math. Logik u. Grundlagen d. Math., 36: 297–318, 1990.

    Article  Google Scholar 

  2. V. M. Abrusci. Phase semantics and sequent calculus for pure noncommutative classical linear propositional logic. Journal of Symbolic Logic, 56: 1403–1451, 1991.

    Article  Google Scholar 

  3. G. Allwein and J. M. Dunn. Kripke models for linear logic. the Journal of Symbolic Logic, 58: 514–545, 1993.

    Article  Google Scholar 

  4. G. Amati and F. Pirri. A uniform tableau method for intuitionistic modal logics I. Manuscript, 1993.

    Google Scholar 

  5. A. R. Anderson and N. D. Belnap Jr. Entailment: the Logic of Relevance and Necessity, Princeton University Press, Princeton, 1975.

    Google Scholar 

  6. A. R. Anderson, N. D. Belnap Jr and J. M. Dunn. Entailment: The Logic of Relevance and Necessity. Princeton University Press, Princeton, 1992.

    Google Scholar 

  7. A. Avron. The semantics and proof theory of linear logic. Theoretical Computer Science, 57: 161–184, 1988.

    Article  Google Scholar 

  8. A. Avron. The semantics and proof theory of linear logic. Theoretical Computer Science, 57: 161–184, 1988.

    Article  Google Scholar 

  9. A. Avron. Simple consequence relations. Journal of Information and Computation, 92: 105–139, 1991.

    Article  Google Scholar 

  10. B. Beckert, R. Hähnle, and P. Schmitt. The even more liberalized 6-rule in free-variable semantic tableaux. In G. Gottlob, A. Leitsch, and Daniele Mundici, editors, Proceedings of the 3rd Kurt Gödel Colloquium, Brno, Czech Republic, number 713 in Lecture Notes in Computer Science, pages 108–119. Springer-Verlag, 1993.

    Google Scholar 

  11. M. Bozic and K. Do`en. Models for normal intuitionistic modal logics. Studia Logica, 43: 217–245, 1984.

    Article  Google Scholar 

  12. K. Broda, M. Finger and A. Russo. LDS-Natural Deduction for Substructural Logics. Technical Report DOC 97–11. Department of Computing, Imperial College, 1987. Short version presented at WOLLIC 96, Journal of the IGPL, 4: 486–491.

    Google Scholar 

  13. K. Broda, M. D’Agostino, and. A. Russo. Transformation methods in LDS. In Hans Jiirgen Ohlbach and Uwe Reyle, editors, Logic, Language and Reasoning. Essays in Honor of Dov Gabbay. pp. 347–390. Kluwer Academic Publishers, 1997. To appear.

    Google Scholar 

  14. R. Bull and K. Segerberg. Basic modal logic. In Dov Gabbay and Franz Guenthner, editors, Handbook of Philosophical Logic, volume II, chapter II.I, pages 1–88. Kluwer Academic Publishers, 1984.

    Google Scholar 

  15. M. D’Agostino and D. M. Gabbay. A generalization of analytic deduction via labelled deductive systems.Part I: Basic substructural logics. Journal of Automated Reasoning, 13: 243–281, 1994.

    Article  Google Scholar 

  16. M. D’Agostino and D. M. Gabbay. A generalization of analytic deduction via labelled deductive systems. Part II: full substructural logics. Forthcoming, 1999.

    Google Scholar 

  17. M. D’Agostino, D. M. Gabbay, and A. Russo. Grafting modalities onto substructural implication systems. Studia Logica, 59: 65–102, 1997.

    Article  Google Scholar 

  18. Kosta Dôsen. Sequent systems and groupoid models I. Studia Logica, 47: 353–385, 1988.

    Article  Google Scholar 

  19. K. Dösen. Sequent systems and groupoid models II. Studia Logica, 48: 41–65, 1989.

    Article  Google Scholar 

  20. K. Dôsen. A historical introduction to substructural logics. In P. Schroeder Heister and Kosta Dosen, editors, Substructural Logics, pages 1–31. Oxford University Press, 1993.

    Google Scholar 

  21. M. Dunn. Relevance logic and entailment. In D. M. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume III, chapter 3, pages 117–224. Kluwer Academic Publishers, 1986.

    Google Scholar 

  22. G. Fischer-Servi. On modal logic with an intuitionistic base. Studia Logica, 36: 141–149, 1977.

    Article  Google Scholar 

  23. M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrecht, 1983.

    Google Scholar 

  24. D. M. Gabbay. How to construct a logic for your application. In Hans Juergen Ohlbach, editor, GWAI-92: Advances in Artificial Intelligence (LNAI 671), pages 1–30. Springer, 1992.

    Google Scholar 

  25. D. M. Gabbay. Labelled Deductive Systems, Volume I - Foundations. Oxford University Press, 1996.

    Google Scholar 

  26. J. Garson. Modularity and relevant logic. Notre Dame Journal of Formal Logic, 30: 207–223, 1989.

    Article  Google Scholar 

  27. G. Gentzen. Unstersuchungen über das logische Schliessen. Math. Zeitschrift, 39:176–210, 1935. English translation in [Szabo, 1969 ].

    Google Scholar 

  28. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50: 1–102, 1987.

    Article  Google Scholar 

  29. R. Kowalski. Logic For Problem Solving. North-Holland, Amsterdam, 1979.

    Google Scholar 

  30. J. Lambek. The mathematics of sentence structure. Amer. Math. Monthly, 65: 154–169, 1958.

    Article  Google Scholar 

  31. W. MacCaull. Relational semantics and a relational proof system for full Lambek calculus. Technical report, Dept. Mathematics and Computing Sciences, St. Francis Xavier University, 1996.

    Google Scholar 

  32. M. A. McRobbie and N. D. Belnap. Relevant analytic tableaux. Studia Logica, XXXVIII: 187–200, 1979.

    Google Scholar 

  33. M. A. McRobbie and N. D. Belnap. Proof tableau formulations of some first-order relevant orthologics. Bulletin of the Section of Logic, Polish Academy of the Sciences, 13: 233–240, 1984.

    Google Scholar 

  34. R. K. Meyer, M. A. McRobbie, and N. D. Belnap. Linear analytic tableaux. In Peter Baumgartner, Reiner Hanle, and Joachim Posegga, editors, Proceedings of Tableaux ’85, 4th conference on Theorem Proving with Analytic Tableaux and Related Methods, St. Goar, volume 918 of Lecture Notes in Artificial Intelligence, pages 278–293. Springer, 1995.

    Google Scholar 

  35. H. Ono and Y. Komori. Logics without the contraction rule. The Journal of Symbolic Logic, 50: 169–201, 1985.

    Article  Google Scholar 

  36. H. Ono. Semantics for substructural logics. In Peter Schroeder-Heister, editor, Substructural Logics, pages 259–291. Oxford University Press, 1993.

    Google Scholar 

  37. G. D. Plotkin and C. P. Stirling. A framework for intuitionistic modal logic. In J. Y. Halpem, editor, Theoretical Aspects of Reasoning About Knowledge, pages 399–406, 1986.

    Google Scholar 

  38. R. and V. Routley. The semantics of first degree entailment. Noûs, VI: 335–359, 1972.

    Article  Google Scholar 

  39. R. Routley and R. K. Meyer. The semantics of entailment, I. In H. Leblanc, editor, Truth, Syntax and Semantics. North Holland, 1973.

    Google Scholar 

  40. A. Russo. Generalising propositional modal logics using labelled deductive systems. In Proceedings of FroCoS’96, 1996.

    Google Scholar 

  41. G. Sambin. The semantics of pretopologies. In Peter Schroeder-Heister, editor, Substructural Logics, pages 293–307. Oxford University Press, 1993.

    Google Scholar 

  42. A. K. Sympson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis, University of Edinburgh, 1993.

    Google Scholar 

  43. A. Tarski. Fundamentale begriffe der methodologie der deduktiven wissenschaften, I. Monatshefte ftir Mathematik und Physik, 37: 361–404, 1930.

    Article  Google Scholar 

  44. A. Tarski. Über einige fundamentale begriffe der metmathematik. Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie, 23: 22–29, 1930.

    Google Scholar 

  45. P. B. Thistlewaite, M. A. McRobbie, and B. K. Meyer. Automated Theorem Proving in Non Classical Logics. Pitman, 1988.

    Google Scholar 

  46. A. Urquhart. Semantics for relevant logic. The Journal of Symbolic Logic, 37: 159–170, 1972.

    Google Scholar 

  47. A. Urquhart. The undecidability of entailment and relevant implication. Journal of Symbolic Logic, 49: 1059–1073, 1984.

    Article  Google Scholar 

  48. J. van Benthem, Language in Action: Categories, Lambdas and Dynamic Logic, North-Holland, Amsterdam, 1991.

    Google Scholar 

  49. G. Wagner. Logic programming with strong negation and inexact predicates. Journal of Logic and Computation, 1: 835–859, 1991.

    Article  Google Scholar 

  50. H. Wansing. The Logic of Information Structures. Number 681 in Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, 1993.

    Google Scholar 

  51. A. H. William. The formuale-as-types notion of construction. In J.P. Seldin and J.R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logics, Lambda Calculus and Formalism. Academic Press, London, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

D’Agostino, M., Gabbay, D., Broda, K. (1999). Tableau Methods for Substructural Logics. In: D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds) Handbook of Tableau Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1754-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1754-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5184-4

  • Online ISBN: 978-94-017-1754-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics