Skip to main content

Order-Theoretic Aspects of Metric Fixed Point Theory

  • Chapter
Handbook of Metric Fixed Point Theory

Abstract

This chapter is intended to present connections between two branches of fixed point theory: The first, using metric methods which is the main subject of this Handbook, and the second, involving partial ordering techniques. We shall concentrate here on the following problem: Given a space with a metric structure (e.g., uniform space, metric space or Banach space) and a mapping satisfying some geometric conditions, define a partial ordering (depending on a structure of a space and/or a mapping) so that one of fundamental ordering principles — the Knaster-Tarski Theorem, Zermelo’s Theorem or the Tarski-Kantorovitch Theorem — can be applied to deduce the existence of a fixed point. We emphasize that all the above principles are independent of the Axiom of Choice (abbr., AC) so the above approach to metric fixed point theory is wholly constructive. It seems that such studies were initiated by H. Amann [5] and B. Fuchssteiner [33] in 1977. Subsequently, they were continued among others by S. Hayashi [37], R. Mańka ([59], [60]), R. Lemmert and P. Volkmann [58], A. Baranga [8], T. Büber and W. A. Kirk [20] and J. Jachymski ([41], [42], [43], [44], [46], [47]). On the other hand, some authors have also studied a reciprocal of the above problem: Given a partially ordered set and a mapping on it, define a metric depending on this order so that some theorems of metric fixed point theory could be applied. That was done recently by Y.-Z. Chen [22], who used Thompson’s [81] metric generated by an order. However, in this chapter, we shall not discuss these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Abian, A fixed point theorem equivalent to the axiom of choice, Arch. Math. Logik 25 (1985), 173–174.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Abian and A. B. Bitown, A theorem on partially ordered sets, with applications to fixed point theorems, Canad. J. Math. 13 (1961), 78–82.

    Article  MathSciNet  MATH  Google Scholar 

  3. YA. Alber, S. Guerre-Delabriere and L. Zelenko, The principle of weakly contractive mappings in metric spaces, Comm. Appl. Nonlinear Anal. 5 (1998), 45–68.

    MathSciNet  MATH  Google Scholar 

  4. M. Altman, A generalization of the Brézis-Browder principle on ordered sets, Nonlinear Anal. 6 (1982), 157–165.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Amann, Order Structures and Fixed Points. Ruhr-Universität, Bochum, 1977 (mimeographed lecture notes).

    Google Scholar 

  6. V. G. Angelov, Fixed point theorems in uniform spaces and applications, Czech. Math. J. 37 (1987), 19–33.

    MathSciNet  Google Scholar 

  7. V. G. Angelov, On the Synge equations in a three-dimensional two-body problem of classical electrodynamics, J. Math. Anal. Appl. 151 (1990), 488–511.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Baranga, The contraction principle as a particular case of Kleene’s fixed point theorem, Discrete Math. 98 (1991), 75–79.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. F. Barnsley, Fractals everywhere. Academic Press, Boston, 1993.

    MATH  Google Scholar 

  10. H. Bell, Review of “Proceedings of the Seminar on Fixed Point Theory and its Applications,” Math. Rev. 57 (1976), no. 1459.

    Google Scholar 

  11. C. Bessaga, private communication (November 1999).

    Google Scholar 

  12. N. Bourbaki, Sur le théorème de Zorn, Arch. Math. 2 (1949–50), 434–437.

    Google Scholar 

  13. D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Brims and F. E. Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math. 21 (1976), 355–364.

    Article  MathSciNet  Google Scholar 

  15. F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci USA 54 (1965), 1041–1044.

    Article  MathSciNet  MATH  Google Scholar 

  16. F. E. Browder, On the convergence of successive approximations for nonlinear functional equations, Indag. Math. 30 (1968), 27–35.

    MathSciNet  Google Scholar 

  17. F. E. Browder, On a theorem of Caristi and Kirk, in “Proceedings of the Seminar on Fixed Point Theory and its Applications,” Dalhousie University, June 1975, pp. 23–27, Academic Press, New York, 1976.

    Google Scholar 

  18. A. Brondsted, On a lemma of Bishop and Phelps, Pacific J. Math. 55 (1974), 335–341.

    Article  MathSciNet  Google Scholar 

  19. N. Brunner, Topologische Maximalprinzipien, Z. Math. Logik Grundlagen Math. 33 (1987), 135–139.

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Bober and W. A. Kirk, A constructive proof of a fixed point theorem of Soardi, Math. Japon. 41 (1995), 233–237.

    MathSciNet  Google Scholar 

  21. J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241–251.

    Article  MathSciNet  MATH  Google Scholar 

  22. Y.-Z. Chen, A variant of the Meir-Keeler type theorem in ordered Banach spaces, J. Math. Anal. Appl. 236 (1999), 585–593.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Covitz and S. B. Nadler, JR., Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5–11.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Danes, A geometric theorem useful in nonlinear functional analysis, Boll. Un. Mat. Ital. 6 (1972), 369–375.

    MathSciNet  MATH  Google Scholar 

  25. J. Danes, Equivalence of some geometric and related results of nonlinear functional analysis, Comment. Math. Univ. Carolin. 26 (1985), 443–454.

    MathSciNet  MATH  Google Scholar 

  26. J. Dugundji and A. GRANAS, Weakly contractive maps and elementary domain invariance theorem, Bull. Greek Math. Soc. 19 (1978), 141–151.

    MathSciNet  MATH  Google Scholar 

  27. J. Dugundji and A. Granas, Fixed Point Theory I. Polish Scientific Publishers, Warszawa, 1982.

    MATH  Google Scholar 

  28. N. Dunford and J. Schwartz, Linear Operators I: General Theory. Wiley Interscience, New York, 1957.

    Google Scholar 

  29. I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353.

    Article  MathSciNet  MATH  Google Scholar 

  30. I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979), 443–474.

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Engelking, General Topology. Polish Scientific Publishers, Warszawa, 1977.

    MATH  Google Scholar 

  32. M. Frigon, On continuation methods for contractive and nonexpansive mappings, in “Recent advances on metric fixed point theory (Seville, 1995)”, pp. 19–30, Ciencias, 48, Univ. Sevilla, Seville, 1996.

    Google Scholar 

  33. B. Fuchssteiner, Iterations and fixpoints, Pacific J. Math. 68 (1977), 73–80.

    MathSciNet  MATH  Google Scholar 

  34. K. Goebel, An elementary proof of the fixed point theorem of Browder and Kirk, Michigan Math. J. 16 (1969), 381–383.

    Article  MathSciNet  MATH  Google Scholar 

  35. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge, 1990.

    Book  MATH  Google Scholar 

  36. D. Cöhde, Zum Prinzip der kontraktiven Abbildung, Math, Nachr. 30 (1965), 251–258.

    Article  Google Scholar 

  37. S. Hayashi, Self-similar sets as Tarski’s fixed points, Publ. Res. Inst. Math. Sci. 21 (1985), 1059–1066.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713–747.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Jachymski, An extension of A. Ostrovski’s theorem on the round-off stability of iterations, Aequationes Math. 53 (1997), 242–253.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Jachymski, Equivalence of some contractivity properties over metrical structures, Proc. Amer. Math. Soc. 125 (1997), 2327–2335.

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Jachymski, Some consequences of fundamental ordering principles in metric fixed point theory, Ann. Univ. M. Curie-Sklodowska A 51 (1997), 123–134.

    MathSciNet  MATH  Google Scholar 

  42. J. Jachymski, Fixed point theorems in metric and uniform spaces via the Knaster-Tarski Principle, Nonlinear Anal. 32 (1998), 225–233.

    Article  MathSciNet  Google Scholar 

  43. J. Jachymski, Some consequences of the Tarski-Kantorovitch ordering theorem in metric fixed point theory, Quaestiones Math. 21 (1998), 89–99.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Jachymski, Caristi’s fixed point theorem and selections of set-valued contractions, J. Math. Anal. Appl. 227 (1998), 55–67.

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Jachymski, On iterative equivalence of some classes of mappings, Ann. Math. Sil. 13 (1999), 149–165.

    MathSciNet  MATH  Google Scholar 

  46. J. Jachymski, L. Gajek and P. Pokarowski, The Tarski-Kantorovitch principle and the theory of iterated function systems, Bull. Austral. Math. Soc. 61 (2000), 247–261.

    Article  MathSciNet  MATH  Google Scholar 

  47. [47] J. Jachymski, Another proof of the Browder-Göhde-Kirk theorem via partial ordering techniques, submitted.

    Google Scholar 

  48. M. A. Khamsi and V. Y. Kreinovich, Fixed point theorems for dissipative mappings in complete probabilistic metric spaces, Math. Japon. 44 (1996), 513–520.

    MathSciNet  MATH  Google Scholar 

  49. W. A. Kirk, A fixed point theorem for mappings which do not increase distance, Amer. Math. Monthly 72 (1965), 1004–1006.

    Article  MathSciNet  MATH  Google Scholar 

  50. W. A. Kirk, Caristi’s fixed point theorem and metric convexity, Colloq. Math. 36 (1976), 81–86.

    MathSciNet  MATH  Google Scholar 

  51. B. Knaster, Un théorème sur les fonctions d’ensembles, Ann. Soc. Polon, Math. 6 (1928), 133–134.

    MATH  Google Scholar 

  52. H. Kneser, Eine direkte Ableitung des Zornschen lemmas aus dem Auswahlaxiom, Math. Z. 53 (1950), 110–113.

    Article  MathSciNet  MATH  Google Scholar 

  53. M. Kuczma, Functional Equations in a Single Variable. Polish Scientific Publishers, Warszawa, 1968.

    MATH  Google Scholar 

  54. M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations. Encyclopedia of Mathematics and its Applications, Vol. 32. Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  55. M. Lacler and P. Volkmann, Über Fixpunktsätze in geordneten Mengen, Math. Nachr. 185 (1997), 111–114.

    Article  MathSciNet  Google Scholar 

  56. A. Lasota and J. Myjak, Semifractals, Bull. Pol. Acad. Sci. Math. 44 (1996), 5–21.

    MathSciNet  MATH  Google Scholar 

  57. A. Lasota and J. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynamics 2 (1994), 41–77.

    MathSciNet  MATH  Google Scholar 

  58. R. Lemmert and P. Volkmann, Un théorème de point fixe dans les ensembles, Mathematica (Cluj) 31 (54) (1989), 69–73.

    MathSciNet  Google Scholar 

  59. R. Manka, Turinici’s fixed point theorem and the axiom of choice, Rep. Math. Logic 22 (1988), 15–19.

    MathSciNet  MATH  Google Scholar 

  60. R. Manka, Some forms of the axiom of choice, Jahrb. Kurt Gödel Ges. 1 (1988), 24–34, Wien.

    Google Scholar 

  61. G. Markowsky, Chain-complete posets and directed sets with applications, Algebra Univ. 6 (1976), 53–68.

    Article  MathSciNet  MATH  Google Scholar 

  62. J. Matkowski, Integrable solutions of functional equations, Dissertationes Math. 127 (1975).

    Google Scholar 

  63. A. N. Milgram, Partially ordered sets, separating systems, and inductiveness, Rep. Math. Colloq. (2) 1 (1939), 18–30.

    Google Scholar 

  64. S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475–488.

    Article  MathSciNet  MATH  Google Scholar 

  65. L. Pasicki, A short proof of the Caristi theorem, Comment. Math. Prace Mat. 20 (1978), 427–428.

    MathSciNet  MATH  Google Scholar 

  66. A. Pelczar, On the invariant points of a transformation, Ann. Pol. Math. 11 (1961), 199–202.

    MathSciNet  MATH  Google Scholar 

  67. J.-P. Penot, A short constructive proof of Caristi’s fixed point theorem, Publ. Math. Pau 10 (1976), 1–3.

    Google Scholar 

  68. J.-P. Penot, Fixed point theorems without convexity, Bull. Soc. Math. France, Memoire 60 (1979), 129–152.

    MATH  Google Scholar 

  69. J.-P. Penot, The drop theorem, the petal theorem and Ekeland’s variational principle, Nonlinear Anal. 10 (1986), 813–822.

    Article  MathSciNet  MATH  Google Scholar 

  70. E. RAKOTCH, A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459–465.

    Article  MathSciNet  MATH  Google Scholar 

  71. W. O. Ray, A rapidly convergent iteration method and Gâteaux differentiable operators, J. Math. Anal. Appl. 103 (1984), 162–171.

    Article  MathSciNet  MATH  Google Scholar 

  72. B. S. W. Schröder, Algorithms for the fixed point property, Theoret. Comput. Sci. 217 (1999), 301–358.

    Article  MathSciNet  MATH  Google Scholar 

  73. R. E. Smithson, Fixed points of order preserving multifunctions, Proc. Amer. Math. Soc. 28 (1971), 304–310.

    Article  MathSciNet  MATH  Google Scholar 

  74. P. Soardi, Existence of fixed points of nonexpansive mappings in certain Banach lattices, Proc. Amer. Math. Soc. 73 (1979), 25–29.

    Article  MathSciNet  MATH  Google Scholar 

  75. J. Soto-Andrade and F. J. Varela, Self-reference and fixed points: A discussion and an extension of Lawvere’s theorem, Acta Appl. Math. 2 (1984), 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  76. W. Takahashi, Existence theorems generalizing fixed point theorems for multivalued mappings, in “Fixed Point Theory and Applications” (J.-B. Baillon and M. Théra, Eds.), Pitman Research Notes in Mathematics, Vol. 252, pp. 397–406. Longman, Harlow, 1991.

    Google Scholar 

  77. D. H. Tan, On the contraction principle in uniformizable spaces, Acta Math. Vietnam. 5 (1980), 88–99.

    MathSciNet  MATH  Google Scholar 

  78. K.-K. Tan, Fixed point theorems for nonexpansive mappings, Pacific J. Math. 41 (1972), 829842.

    Google Scholar 

  79. E. Tarafdar, An approach to fixed-point theorems on uniform spaces, Trans. Amer. Math. Soc. 191 (1974), 209–225.

    Article  MathSciNet  MATH  Google Scholar 

  80. A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math. 5 (1955), 285–309.

    Article  MathSciNet  MATH  Google Scholar 

  81. A. C. Thompson, On certain contraction mappings in a partially ordered vector space, Proc. Amer. Math. Soc. 14 (1963), 438–443.

    MathSciNet  MATH  Google Scholar 

  82. Ts. Tsatchev and V. G. ANGELOV, Fixed points of nonself-mappings and applications, Nonlinear Anal. 21 (1993), 9–16.

    Article  MathSciNet  Google Scholar 

  83. M. Turinici, Maximal elements in ordered topological spaces, Bull. Greek Math. Soc. 20 (1979), 141–148.

    MathSciNet  MATH  Google Scholar 

  84. M. Turinici, A generalization of Altman’s ordering principle, Proc. Amer. Math. Soc. 90 (1984), 128–132.

    MathSciNet  MATH  Google Scholar 

  85. M. Turinici, Metric variants of the Brézis-Browder ordering principles, Demonstratio Math. 22 (1989), 213–228.

    MathSciNet  MATH  Google Scholar 

  86. W. Walter, Remarks on a paper by F. Browder about contractions, Nonlinear Anal. 5 (1981), 21–25.

    Article  MathSciNet  MATH  Google Scholar 

  87. R. F. Williams, Composition of contractions, Bol. Soc. Brasil. Mat. 2 (1971), 55–59.

    Article  MathSciNet  MATH  Google Scholar 

  88. R. Williamson and L. Janos, Constructing metrics with the Heine-Borel property, Proc. Amer. Math. Soc. 100 (1987), 567–573.

    Article  MathSciNet  MATH  Google Scholar 

  89. E. Zeidler, Nonlinear Functional Analysis and its Applications I. Springer-Verlag, Berlin, 1986.

    Book  MATH  Google Scholar 

  90. E. Zermelo, Beweis, das jede Menge wohlgeordnet werden kann, Math. Ann. 59 (1904), 514516.

    Google Scholar 

  91. E. Zermelo, Neuer Beweis für die Möglichkeit einer Wohlordnung, Math. Ann. 65 (1908), 107–128.

    Article  MATH  Google Scholar 

  92. A. Zitarosa, Una generalizzazione del teorema di Banach sulle contrazioni, Mathematiche 23 (1968), 417–424.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jachymski, J. (2001). Order-Theoretic Aspects of Metric Fixed Point Theory. In: Kirk, W.A., Sims, B. (eds) Handbook of Metric Fixed Point Theory. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1748-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1748-9_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5733-4

  • Online ISBN: 978-94-017-1748-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics