Skip to main content

Abstract

This paper reviews local computation algorithms to calculate with imprecise probabilities. Most of the existing work on imprecise probabilities has focused on the particular case of interval probabilities [Amarger et al., 1991; de Campos and Huete, 1993; de Campos et al., 1994; Dubois and Prade, 1994; Fagin and Halpern, 1991; Fertig and Breese, 1990; Fertig and Breese, 1993; van der Gagg, 1991; Grosof, 1986; Nilsson, 1986; Paass, 1988; Quinlan, 1983; Tessen, 1989; Tessem, 1992]. However, a more general approach for imprecise probabilities consists in the use of convex sets of probability measures [de Campos and Moral, 1995; Cano et al., 1993a; Dempster, 1967; Kyburg and Pittarelli, 1992; Levi, 1980; Levi, 1985; Moral, 1993; Pittarelli, 1991; Smith, 1961; Snow, 1986; Stirling and Morrel, 1991; Walley, 1991; Walley, 1996; Wilson and Moral, 1994]. The basic idea is that if for a variable we do not have the exact values of probabilities, we may have a convex set of possible probability distributions. From a behavioral point of view the use of convex sets of probabilities was justified by Walley [1991]. According to this author what distinguishes this theory from the Bayesian one is that imprecision in probability and utility models is admitted. Strict Bayesians assume that for each event there is some betting rate you consider fair: you are ready to bet on either side of the bet. This rate determines the exact value of your subjective probability of the event. Convex sets of probabilities arose by assuming that for each event there is a maximum rate at which you are prepared to bet on it (determining its lower probability) and a minimum rate (determining its upper probability).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. S. Amarger, D. Dubois, and H. Prade. Constraint propagation with imprecise conditional probabilities. In B.D. Ambrosio, Ph. Smets, and P.P. Bonissone, editors, Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence,pages 26–34. Morgan and Kaufmann, 1991.

    Google Scholar 

  2. M. Avriel. Nonlinear Programming: Analysis and Methods. Prentice Hall, Englewood Cliffs, 1980.

    Google Scholar 

  3. J.S. Breese and K.W. Fertig. Decision making with interval influence diagrams. In L.N. Kanal P.P. Bonissone, M. Henrion, editor, Uncertainty in Artificial Intelligence, 6, pages 467–478. Elsevier, 1991.

    Google Scholar 

  4. A. Cano. Algoritmos Aproximados para la Propagacibn de Conjuntos Convexos de Probabilidades en Grafos de Dependencias. PhD thesis, Universidad de Granada, 1999.

    Google Scholar 

  5. A. Cano, J.E. Cano, and S. Moral. Simulation algorithms for convex sets of probabilities. Technical Report TR–93–2–01, DECSAI, Universidad de Granada, 1993.

    Google Scholar 

  6. A. Cano, J.E. Cano, and S. Moral. Convex sets of probabilities propagation by simulated annealing. In Proceedings of the Fith International Conference IPMU’94,pages 4–8, Paris, 1994.

    Google Scholar 

  7. A. Cano and S. Moral. Heuristic algorithms for the triangulation of graphs. In B. Bouchon-Meunier, R.R. Yager, and L.A. Zadeh, editors, Advances in Intelligent Computing, pages 98–107. Springer Verlag, 1995.

    Google Scholar 

  8. A. Cano and S. Moral. A genetic algorithm to approximate convex sets of probabilities. In Proceedings of Information Processing and Management of Uncertainty in Knowledge-Based Systems Conference (IPMU’ 96) Vol. 2, pages 859–864, 1996.

    Google Scholar 

  9. Cano et al.,1991] J.E. Cano, S. Moral, and J.F. Verdegay-Lopez. Combination of upper and lower probabilities. In B.D. Ambrosio, Ph. Smets, and P.P. Bonissone, editors, Proceedings of the 7th Conference on Uncertainly in Artificial Intelligence,pages 61–68. Morgan and Kaufmann, 1991.

    Google Scholar 

  10. J.E. Cano, S. Moral, and J.F. Verdegay-Lopez. Propagation of convex sets of probabilities in directed acyclic networks. In B. Bouchon-Meunier et al., editors, Uncertainty in Intelligent Systems,pages 15–26. Elsevier, 1993.

    Google Scholar 

  11. I. Cousu, S. Moral, and P. Walley. Examples of independence for imprecise probabilities. In Proceedings of the First International Symposium on Imprecise Probabilities and Their Applications (ISIPTA’99),pages 121–130,1999.

    Google Scholar 

  12. F. Cozman. Robust analysis of bayesian networks with finitely generated convex sets of distributions. Technical Report CMU-RI-TR96–41, Carnegie Mellon University, 1996.

    Google Scholar 

  13. F. Cozman. Robustness analysis of Bayesian networks with local convex sets of distributions. In D. Geiger and P.P. Shenoy, editors, Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence, pages 108–115. Morgan and Kaufmann, San Mateo, 1997.

    Google Scholar 

  14. L.M. de Campos and J.F. Huete. Independence concepts in upper and lower probabilties. In B. Bouchon-Meunier et al., editors, Uncertainty in Intelligent Systems, pages 85–96. Elsevier, 1993.

    Google Scholar 

  15. L.M. de Campos, J.F. Huete, and S. Moral. Probability intervals: a tool for uncertain reasoning. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,2:167–196, 1994.

    Google Scholar 

  16. L.M. de Campos, M.T. Lamata, and S. Moral. The concept of conditional fuzyy measure. International Journal of Intelligent Systems,5:237–246, 1990.

    Google Scholar 

  17. L.M. de Campos and S. Moral. Independence concepts for convex sets of probabilities. In Ph. Besnard and S. Hanks, editors, Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, pages 108–115. Morgan and Kaufmann, 1995.

    Google Scholar 

  18. A.P. Dempster. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 38: 325–339, 1967.

    Google Scholar 

  19. D. Dubois and H. Prade. A survey of belief revision and updating rules in various uncertainty models. International Journal of Intelligent Systems, 9: 61–100, 1994.

    Article  Google Scholar 

  20. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, Berlin, 1987.

    Google Scholar 

  21. R. Fagin and J.Y. Halpem. A new approach to updating beliefs. In P.P. Bonissone, M. Henrion, L.N. Kanal, and J.F. Lemmer, editors, Uncertainty in Artificial Intelligence, 6, pages 347–374. North-Holland, Amsterdam, 1991.

    Google Scholar 

  22. E. Fagiuoli and M. Zaffalon. 2u: an exact interval propagation algorithm for polytrees with binary variables. Artificial Intelligence, 106: 77–107, 1998.

    Article  Google Scholar 

  23. K.W. Fertig and J.S. Breese. Interval influence diagrams. In M. Henrion, R.D. Shacter, L.N. Kanal, and J.F. Lemmer, editors, Uncertainty in Artificial Intelligence, 5, pages 149–161. North-Holland, Amsterdam, 1990.

    Google Scholar 

  24. K.W. Fertig and J.S. Breese. Probability intervals over influence diagrams. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15: 280–286, 1993.

    Article  Google Scholar 

  25. S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6: 721–741, 1984.

    Article  Google Scholar 

  26. J.W. Greene and K.J. Supowit. Simulated annealing without rejected moves. In Proc. IEEE Int. Conference on Computer Design, pages 658–663, Port Chester, 1984.

    Google Scholar 

  27. B.N. Grosof. An inequality paradigm for probabilistic knowledge. In L.N. Kanal and L.F. Lemmer, editors, Uncertainty in Artificial Intelligence, pages 259–275. North-Holland, Amsterdam, 1986.

    Google Scholar 

  28. P. Hansen and B. Jaumard. Probabilistic satisfiability. This Volume, 2000.

    Google Scholar 

  29. T. Hrycej. Gibbs sampling in bayesian networks. Artificial Intelligence, 46: 351–363, 1990.

    Article  Google Scholar 

  30. Huber, 19811 P.J. Huber. Robust Statistics. Wiley, New York, 1981.

    Book  Google Scholar 

  31. J.L. Imbert and P. Van Hentenryck. Redundancy elimination with a lexicographic solved form. Annals of Mathematics and Artificial Intelligence, 17: 85–106, 1996.

    Article  Google Scholar 

  32. F.V. Jensen and S.L. Lauritzen. Probabilistic networks. This Volume, 2000.

    Google Scholar 

  33. H.H. Karwan, V. Lofti, J. Telgen, and S. Zionts. Redundancy in Mathematical Programming: a State-of-the-Art Survey. Lecture Notes in Economics and Mathematical Systems N. 206. Springer Verlag, 1983.

    Google Scholar 

  34. S. Kirpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing. Science, 220:671–680,1983.

    Google Scholar 

  35. U. Kjœrulff. Optimal decomposition of probabilistic networks by simulated annealing. Statistics and Computing, 2: 7–17, 1992.

    Article  Google Scholar 

  36. J. Kohlas and P. P. Shenoy. Computing marginals using local computation. This Volume, 2000.

    Google Scholar 

  37. H.E. Kyburg. Bayesian and non-bayesian evidential updating. Artificial Intelligence, 31: 271–293, 1987.

    Article  Google Scholar 

  38. H.E. Kyburg and M. Pittarelli. Some problems for convex Bayesians. In D. Dubois et al., editors, Proceedings of the 8th Conference on Uncertainty in Artificial Intelligence, pages 149–154, Morgan Kaufmann, San Mateo, 1992.

    Google Scholar 

  39. C. Lassez and J.L. Lassez. Quantifier elimination for conjunctions of linear constraints via a convex hull algorithm. In B.R. Donald et al., editors, Symbolic and Numerical Computation for Artificial Intelligence, pages 103–119. Academic Press, London, 1992.

    Google Scholar 

  40. J.L. Lassez and K. McAloon. A canonical form for generalized linear constraints. Journal of Symbolic Computation, 13: 1–24, 1992.

    Article  Google Scholar 

  41. S.L. Lauritzen and D.J. Spiegelhalter. Local computation with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Ser. B, 50: 157–224, 1988.

    Google Scholar 

  42. M. Lavine. Sensitivity in Bayesian statistics, the prior and the likelihood. Journal of the American Statistical Association, 86: 396–399, 1991.

    Article  Google Scholar 

  43. I. Levi. The Enterprise of Knowledge. MIT Press, 1980.

    Google Scholar 

  44. I. Levi. Imprecision and indeterminacy in probability judgement. Philosophy of Science, 52: 390–409, 1985.

    Article  Google Scholar 

  45. Th. Lukasiewicz. Precision of Probabilistic Deduction under Taxonomic Knowledge. PhD thesis, Universität Tüningen, 1996.

    Google Scholar 

  46. Th. Lukasiewicz. Probabilistic deduction with conditional constraints over basic events. Journal of Artificial Intelligence Research, 10:199–241, 1999.

    Google Scholar 

  47. M. Manas and J. Nedoma. Finding all vertices of a convex polyhedron. Num. Math., XII: 226–229, 1968.

    Google Scholar 

  48. T.H. Matheiss and D.S. Rubin. A survey and comparison of methods for finding all vertices of convex polyedral sets. Mathematics of Operational Research, 5: 167–185, 1980.

    Article  Google Scholar 

  49. Z. Michalewicz. Artificial Intelligence. Genetic Algorithms + Data Structures=Evolution Programs. Springer Verlag, 1992.

    Google Scholar 

  50. S. Moral. A formal language for convex sets of probabilities. In M. Clarke, R. Kruse, and S. Moral, editors, Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pages 274–281. Springer-Verlag, Berlin, 1993.

    Chapter  Google Scholar 

  51. S. Moral and L.M. de Campos. Updating uncertain information. In B. Bouchon-Meunier, R.R. Yager, and L.A. Zadeh, editors, Uncertainty in Knowledge Bases, pages 58–67. Springer Verlag, Berlin, 1991.

    Chapter  Google Scholar 

  52. N.J. Nilsson. Probabilistic logic. Artificial Intelligence, 28: 71–87, 1986.

    Article  Google Scholar 

  53. G. Paass. Probabilistic logic. In Ph. Smets, A. Mamdani, D. Dubois, and H. Prade, editors, Non-Standard Logics for Automated Reasoning, pages 213–251. Academic Press, London, 1988.

    Google Scholar 

  54. J. Pearl. Probabilistic Reasoning with Intelligent Systems. Morgan and Kaufman, San Mateo, 1988.

    Google Scholar 

  55. M. Pittarelli. Decisions with probabilities over finite product spaces. IEEE Transactions on Systems, Man and Cybernetics, 21: 1238–1242, 1991.

    Article  Google Scholar 

  56. P.J.M. Van Laarhoven and E.H.L. Aarts. Simulated Annealing. Reidel Publishing Company, Drodrecht, 1988.

    Google Scholar 

  57. F.P. Preparata and M.I. Shamos. Computational Geometry. An Introduction. Springer Verlag, New York, 1985.

    Google Scholar 

  58. J.R. Quinlan. Inferno: a cautious approach to uncertain inference. Computation Journal, 26: 255–269, 1983.

    Google Scholar 

  59. S. Russell, J. Binder, D. Koller, and K. Kanazawa. Local learning in probabilistic networks with hidden variables. In Proceedings of the 14th IJCAI Conference (IJCAP 95) Vol. 2,Montreal, 1995.

    Google Scholar 

  60. A.A. Salo. Tighter estimates for the posteriors of imprecise prior and conditional probabilities. IEEE Transactions on Systems, Man, and Cybernetics–Part A: Systems and Humans, 26: 820–825, 1996.

    Article  Google Scholar 

  61. R.D. Shachter. Evaluating influence diagrams. Operations Research, 34: 871–882, 1986.

    Article  Google Scholar 

  62. R.D. Shachter. Probabilistic inference and influence diagrams. Operations Research, 36: 589–604, 1988.

    Article  Google Scholar 

  63. P.P. Shenoy. A valuation-based language for expert systems. International Journal of Approximate Reasoning, 3: 383–411, 1989.

    Article  Google Scholar 

  64. P.P. Shenoy and G. Shafer. Axioms for probability and belief-function propagation. In Shachter et al., editors, Uncertainty in Artificial Intelligence, 4, pages 169–198. Elsevier, Amsterdam, 1990.

    Google Scholar 

  65. C.A.B. Smith. Consistency in statistical inference and decision (with discussion). Journal of the Royal Statistical Society, Series B, 23: 1–37, 1961.

    Google Scholar 

  66. P. Snow. Bayesian inference without point estimates. In Proceedings of the AAAI’86 Conference, pages 233–237, Philadelphia, 1986.

    Google Scholar 

  67. P. Spines, C. Glymour, and R. Schemes. Causation, Prediction and Search. Springer Verlag, Berlin, 1993.

    Google Scholar 

  68. W. Stirling and D. Morrel. Convex bayes decision theory. IEEE Transactions on Systems, Man and Cybernetics, 21: 163–183, 1991.

    Article  Google Scholar 

  69. B. Tessem. Interval probability propagation. International Journal of Approximate Reasoning, 7: 95–120, 1992.

    Article  Google Scholar 

  70. B. Tessen. Interval Representation of Uncertainty in Artificial Intelligence. PhD thesis, Department of Informatics, University of Bergen, Norway, 1989.

    Google Scholar 

  71. H. Thöne. Precise Conclusions under Uncertainty and Incompleteness in Deductive Database Systems. PhD thesis, Universität Tübingen, Germany, 1994.

    Google Scholar 

  72. H. Thöne, U. Güntzer, and W. Kießling. Towards precision of probabilistic bounds propagation. In D. Dubois, M.P. Wellman, B. D’Ambrosio, and Ph. Smets, editors, Proceedings of the 8th Conference on Uncertainty in Artificial Intelligence,pages 315–322, San Mateo, 1992. Morgan and Kaufmann.

    Google Scholar 

  73. L.C. van der Gaag. Computing probability intervals under independence constraints. In P.P. Bonissone, M. Henrion, L.N. Kanal, and J.F. Lemmer, editors, Uncertainty in Artificial Intelligence, 6, pages 457–466. North-Holland, Amsterdam, 1991.

    Google Scholar 

  74. L.C. van der Gaag. Probability Models for Plausible Reasoning. PhD thesis, University of Amsterdam, 1991.

    Google Scholar 

  75. P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, 1991.

    Google Scholar 

  76. P. Walley. Measures of uncertainty in expert systems. Artificial Intelligence, 83: 1–58, 1996.

    Article  Google Scholar 

  77. N. Wilson and S. Moral. A logical view of probability. In A. Cohn, editor, Proceedings of the Eleventh European Conference on Artificial Intelligence (ECAI’94), pages 386390, Wiley, London, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cano, A., Moral, S. (2000). Algorithms for Imprecise Probabilities. In: Kohlas, J., Moral, S. (eds) Handbook of Defeasible Reasoning and Uncertainty Management Systems. Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1737-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1737-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5603-0

  • Online ISBN: 978-94-017-1737-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics