Skip to main content

Part of the book series: Handbook of Defeasible Reasoning and Uncertainty Management Systems ((HAND,volume 1))

Abstract

It is almost a safe bet to assume that most students, after receiving the first rudiments of Boolean calculus, wonder: “Why not more than two truth-values?” This question is both natural and vague; attempts to give an answer originated a lot of logical systems. Because of the original vagueness, it is not surprising that the answers range over a wide spectrum of possibilities, and that the borders of the discipline are not clear. Up to now, no many-valued system has imposed as the system of many-valued logic. The situation is analogous to that occurring in—say—modal logic, and the sizes of the relative literatures can be compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Avron. Natural 3-valued logics—characterization and proof theory. J. of Symbolic Logic, 56 (1): 276–294, 1991.

    Article  Google Scholar 

  2. M. Baaz and C. G. Fermüller. Resolution-based theorem proving for many-valued logics. J. Symbolic Computation, 19 (4): 353–391, 1995.

    Article  Google Scholar 

  3. M. Baaz, C. G. Fermüller, and R. Zach. Elimination of cuts in first-order finite-valued logics. J. Informat. Process. Cybernet., EIK 29 (6): 333–355, 1993.

    Google Scholar 

  4. M. Baaz and R. Zach. Approximating propositional calculi by finite-valued logics. In Proc. International Symposium on Multiple-Valued Logics, ISMVL’94, Boston/MA, USA. IEEE Press, Los Alamitos, 1994.

    Google Scholar 

  5. R. Balbes and Ph. Dwinger. Distributive Lattices. University of Missouri Press, 1974.

    Google Scholar 

  6. N. D. Belnap, Jr. A useful four-valued logic. In Dunn and Epstein [Dunn and Epstein, 1977 ], pages 5–37.

    Google Scholar 

  7. A. Bigard, K. Keimel, and S. Wolfenstein. Groupes et anneaux réticulés, volume 608 of Lecture Notes in Math. Springer, 1977.

    Google Scholar 

  8. U. Blau. Die dreiwertige Logik der Sprache; ihre Syntax, Semantik und Anwendung in der Sprachanalyse. De Gruyter, Berlin, 1978.

    Book  Google Scholar 

  9. A. Blikle. Three-valued predicates for software specification and validation. Fund. Inf., 14: 387–410, 1991.

    Google Scholar 

  10. W. J. Blok and D. Pigozzi. Algebraizable logics, volume 77 n. 396 of Mem. Amer. Math. Soc. Amer. Math. Soc., Providence, RI, 1989.

    Google Scholar 

  11. D. A. Bochvar. Ob odnom tréhznaénom istislénii égo priménénii k analizu paradoksov klassiééskogo rassirénnogo funkcional’nogo iscisléniâ (On a 3-valued logical calculus and its applications to the analysis of contradictions). Matématicéskij sbornik, 4: 287–308, 1939.

    Google Scholar 

  12. L. Bolc and P. Borowik. Many-Valued Logics, I. Springer, 1992. Reviewed in [Hâjek and Zach, 1994 ].

    Google Scholar 

  13. W. A. Camielli. Systematization of finite many-valued logics through the method of tableaux. J. of Symbolic Logic, 52 (2): 473–493, 1987.

    Article  Google Scholar 

  14. W. A. Carnielli. On sequents and tableaux for many-valued logics. J. Appl. Non-Classical Logics, 8 (1): 59–76, 1991.

    Google Scholar 

  15. C. C. Chang. Algebraic analysis of many valued logics. Trans. Amer. Math. Soc., 88: 467–490, 1958.

    Article  Google Scholar 

  16. C. C. Chang. A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc., 93: 74–80, 1959.

    Google Scholar 

  17. A. Church. Introduction to Mathematical Logic. Princeton University Press, 1956.

    Google Scholar 

  18. R. Cignoli. Free lattice-ordered abelian groups and varieties of MV-algebras. In Abad M., editor, Proceedings IX Latin America Symp. Math. Logic, volume 38 of Notas de Logica Matemàtica, pages 113–118. Univ. National del Sur, Bahia Blanca, 1993.

    Google Scholar 

  19. R. Cignoli, I. D’Ottaviano and D. Mundici. Algebras das logicas de Lukasiewicz. Second edition. Centro de Logica, Epistemologia e Historia da Ciência, Campinas, Sao Paulo, Brazil, 1994. ( In Portugese. )

    Google Scholar 

  20. J. P. Delahaye and V. Thibau. Programming in three-valued logic. Theoret. Comp. Sci., 78: 189–246, 1991.

    Article  Google Scholar 

  21. A. Di Nola. Representation and reticulation by quotients of MV-algebras. Ricerche di Matematica, 40 (2): 291–297, 1991.

    Google Scholar 

  22. R. P. Dilworth and M. Ward. Residuated lattices. Trans. Amer. Math. Soc., 45: 335–354, 1939.

    Article  Google Scholar 

  23. P. Doherty and W. Lukasiewicz. NML3—a nonmonotonic logic with explicit default. J. Appl. Non-Classical Logics, 2 (1): 9–48, 1992.

    Google Scholar 

  24. Dummett, 19591 M. Dummen. A propositional calculus with denumerable matrix. J. of Symbolic Logic, 24 (2): 97–106, 1959.

    Article  Google Scholar 

  25. J. M. Dunn and G. Epstein, editors. Modern uses of multiple-valued logic. Reidel, Dordrecht, 1977.

    Google Scholar 

  26. P. Dwinger. A survey of the theory of Post algebras and their generalizations. In Dunn and Epstein [Dunn and Epstein, 1977 ], pages 53–75.

    Google Scholar 

  27. G. Epstein. The lattice theory of Post algebras. Trans. Amer. Math. Soc., 95: 300–317, 1960.

    Article  Google Scholar 

  28. M. Fitting. Bilattices in logic programming. In Proc. 20th International Symposium on Multiple-Valued Logic, pages 238–246. IEEE Press, 1990.

    Google Scholar 

  29. M. Fitting. Bilattices and the semantics of logic programming. J. Logic Programming, 11 (1,2): 91–116, 1991.

    Article  Google Scholar 

  30. M. C. Fitting. Many-valued modal logic. Fund. Inf, 15: 235–254, 1991.

    Google Scholar 

  31. M. C. Fitting. Many-valued modal logic II. Fund. Inf., 17: 55–73, 1992.

    Google Scholar 

  32. R. R. R. Gill. The Craig-Lyndon interpolation theorem in 3-valued logic. J. of Symbolic Logic, 35: 230–238, 1970.

    Article  Google Scholar 

  33. M. L. Ginsberg. Multivalued logics: a uniform approach to reasoning in artificial intelligence. Comput. Intel]., 4: 265–316, 1988.

    Article  Google Scholar 

  34. K. Gödel. Zum intuitionistischen Aussagenkalkül. In Ergebnisse eines mathematischen Kolloquiums, 1933. Reprinted in [Gödel, 1986 ].

    Google Scholar 

  35. K. Gödel. Collected Works. Oxford University Press, 1986.

    Google Scholar 

  36. S. Gottwald. Mehrwertige Logik. Akademie-Verlag, Berlin, 1989.

    Google Scholar 

  37. R. Grigolia. Algebraic analysis of Lukasiewicz-Tarski’s n-valued logical systems. In Wöjcicki and Malinowski [Wöjcicki and Malinowski, 1977 ], pages 81–92.

    Google Scholar 

  38. Hähnle, to appear] R. Hähnle. Tableau for many-valued logic. In M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods. Kluwer, Dordrecht. To appear.

    Google Scholar 

  39. R. Hähnle. Towards an efficient tableau proof procedure for multiple-valued logics. In E. Börger, H. Kleine Büning, M. M. Richter, and W. Schönfeld, editors, Selected Papers from Computer Science Logic, CSL’90, Heidelberg, Germany, volume 533 of Lecture Notes in Comp. Sci., pages 248–260. Springer, 1991.

    Google Scholar 

  40. R. Hähnle. Automated Deduction in Multiple-Valued Logics. Clarendon Press, Oxford, 1993.

    Google Scholar 

  41. Hähnle, 19941 R. Hähnle. Short conjunctive normal forms in finitely-valued logics. Journal of Logic and Computation, 4 (6): 905–927, 1994.

    Article  Google Scholar 

  42. R. Hähnle and W. Kernig. Verification of switch level designs with many-valued logic. In A. Voronkov, editor, Logic Programming and Automated Reasoning. Proceedings LPAR’93, number 698 in Lecture Notes in Artificial Intelligence, pages 158–169. Springer, 1993.

    Google Scholar 

  43. R Häjek. Fuzzy logic and arithmetical hierarchy. Fuzzy sets and systems, 73(31:359363, 1995.

    Google Scholar 

  44. R. Häjek, L. Godo and F. Esteva. A complete many-valued logic with product-conjunction. Arch. Math. Logic, 35 (3): 191–208, 1996.

    Google Scholar 

  45. P. Häjek and R. Zach. Review of Leonard Bolc and Piotr Borowik: Many-valued logics I. J. Appl. Non-Classical Logics, 4 (2): 215–220, 1994.

    Article  Google Scholar 

  46. M. Hanazawa and M. Takano. An interpolation theorem in many-valued logic. J. of Symbolic Logic, 51 (2): 448–452, 1985.

    Google Scholar 

  47. L. S. Hay. Axiomatization of the infinite-valued predicate calculus. J. of Symbolic Logic, 43: 76–77, 1963.

    Google Scholar 

  48. S. Jäskowski. Recherches sur le système de la logique intuitioniste. In Hermann Cie, editor, Actes du Congrès International de Philosophie Scientifique, vol. 4, Philosophie des Mathématiques, pages 58–61, 1936.

    Google Scholar 

  49. Y. Kaluzhny and A. Y. Muravitsky. A knowledge representation based on the Belnap’s four-valued logic. J. Appl. Non-Classical Logics, 1993.

    Google Scholar 

  50. Y. Kawano. On the structure of complete MV-algebras. J. of Algebra, 163: 773–776, 1994.

    Article  Google Scholar 

  51. S. C. Kleene. On a notation for ordinal numbers. J. of Symbolic Logic, 3: 150–155, 1938.

    Article  Google Scholar 

  52. S. C. Kleene. Introduction to Metamethematics. Van Nostrand, 1952.

    Google Scholar 

  53. S. Körner, editor. Philosophy of logic. Blackwell, Oxford, 1976.

    Google Scholar 

  54. J. Log and R. Suszko. Remarks on sentential logics. Indagationes Mathematicae, 20: 177–183, 1958.

    Google Scholar 

  55. J. Lukasiewicz. O logice tröjwartogciowej. Ruch Filozoficzny, 5:169–171,1920. Translated in [McCall, 1967 ].

    Google Scholar 

  56. J. Lukasiewicz and A. Tarski. Untersuchungen über den Aussagenkalkül. Comptes rendus de la Société des Sciences et des Lettres de Varsovie, 23(iii):30–50, 1930. Translated in [Tarski, 1981 ].

    Google Scholar 

  57. G. Malinowski. Many-Valued Logics. Oxford University Press, 1993.

    Google Scholar 

  58. S. McCall. Polish Logic 1920–1939. Oxford University Press, 1967.

    Google Scholar 

  59. R. McNaughton. A theorem about infinite-valued sentential logic. J. of Symbolic Logic, 16: 1–13, 1951.

    Article  Google Scholar 

  60. J. Menu and J. Pavelka. A note on tensor products on the unit interval. Comment. Math. Univ. Carolinae, 17: 71–83, 1976.

    Google Scholar 

  61. T. Miyama. The interpolation theorem and Beth’s theorem in many-valued logics. Mathematica Japonica, 19: 341–355, 1974.

    Google Scholar 

  62. C. G. Morgan. A resolution principle for a class of many-valued logics. Logique et Analyse, 19 (74–76): 311–339, 1976.

    Google Scholar 

  63. O. Morikawa. Some modal logics based on a three-valued logic. Notre Dame J. of Formal Logic, 30 (1): 130–137, 1989.

    Article  Google Scholar 

  64. A. Mostowski. On a generalization of quantifiers. Fund. Math., 44: 12–36, 1957.

    Google Scholar 

  65. D. Mundici. Interpretation of AF C*-algebras in Lukasiewicz sentential calculus. J. of Functional Analysis, 65: 15–63, 1986.

    Article  Google Scholar 

  66. D. Mundici. Satisfiability in many-valued sentential logic is NP-complete. Theoret. Comp. Sci., 52: 145–153, 1987.

    Article  Google Scholar 

  67. D. Mundici. The logic of Ulam’s game with lies. In C. Bicchieri and M. L. Dalla Chiara, editors, Knowledge, Belief and Strategic Interaction, Cambridge Studies in Probability, Induction and Decision Theory, pages 275–284. Cambridge University Press, 1989.

    Google Scholar 

  68. D. Mundici. Ulam games, Lukasiewicz logic, and AF C* -algebras. Fund. Inf., 18: 151–161, 1993.

    Google Scholar 

  69. D. Mundici. A constructive proof of McNaughton’s theorem in infinite-valued logic. J. of Symbolic Logic, 59: 596–602, 1994.

    Article  Google Scholar 

  70. D. Mundici and G. Panti. Extending addition in Elliott’s local semigroup. J. of Functional Analysis, 117 (2): 461–472, 1993.

    Article  Google Scholar 

  71. N. V. Murray and E. Rosenthal. Signed formulas: A liftable meta logic for multiple-valued logics. In Proceedings ISMIS’93, Trondheim, Norway, volume 689 of Lecture Notes in Comp. Sci., pages 275–284. Springer, 1993.

    Google Scholar 

  72. E. Orlowska. Mechanical proof methods for Post Logics. Logique et Analyse, 28 (110): 173–192, 1985.

    Google Scholar 

  73. P. Ostermann. Many-valued modal propositional calculi. Z. math. Logic Grundlag. Math., 34: 343–354, 1988.

    Article  Google Scholar 

  74. G. Panti. The logic of partially ordered abelian groups with strong unit. In G. Gerla, ed., Atti del XV lncontro di Logica Matematica di Camerino, pages 85–107. 1992.

    Google Scholar 

  75. G. Panti. A geometric proof of the completeness of the Lukasiewicz calculus. J. of Symbolic Logic, 60 (2): 563–578, 1995.

    Article  Google Scholar 

  76. J. B. Paris. The Uncertain Reasoner’s Companion-a Mathematical Perspective. Cambridge University Press, 1994.

    Google Scholar 

  77. J. Pavelka. On fuzzy logic I,II,III. Z. math. Logic Grundlag. Math., 25:45–52, 119134, 447–464, 1979.

    Google Scholar 

  78. E. L. Post. Introduction to a general theory of propositions. Amer. J. Math., 43:163–185, 1921. Reprinted in [van Heijenoort, 1967 ].

    Google Scholar 

  79. M. E. Ragaz. Arithmetische Klassifikation von Formelmengen der unendlichwertigen Logik. PhD thesis, ETH Zürich, 1981.

    Google Scholar 

  80. H. Rasiowa. An algebraic approach to non-classical logics. Number 78 in Studies in Logic. North Holland, 1974.

    Google Scholar 

  81. N. Rescher. Many-Valued Logic. McGraw-Hill, 1969.

    Google Scholar 

  82. A. Rose and J. B. Rosser. Fragments of many-valued sentential calculus. Trans. Amer. Math. Soc., 87: 1–53, 1958.

    Article  Google Scholar 

  83. J. B. Rosser and A. R. Turquette. Many-valued Logics. North-Holland, 1952.

    Google Scholar 

  84. G. Rousseau. Sequents in many-valued logic I. Fund. Math., 60: 23–33, 1967.

    Google Scholar 

  85. B. Scarpellini. Die Nichtaxiomatisierbarkeit des unendlichwertigen Prädikatenkalküls von Lukasiewicz. J. of Symbolic Logic, 27 (2): 159–170, 1962.

    Article  Google Scholar 

  86. P. K. Schotch, J. B. Jensen, P. F Larsen, and E. J. Maclellan. A note on three-valued modal logic. Notre Dame J. of Formal Logic, 14: 63–68, 1978.

    Article  Google Scholar 

  87. D. Scott. Does many-valued logic have any use? In Körner [Körner, 1976 ], pages 64–74.

    Google Scholar 

  88. R. A. M. Seuren. Discourse Semantics. Blackwell, Oxford, 1985.

    Google Scholar 

  89. R. M. Smullyan. First-Order Logic. Dover, 2nd corrected edition, 1995. First published 1968 by Springer.

    Google Scholar 

  90. T. P. Speed. A note on Post algebras. Colloq. Math., 24: 37–44, 1971.

    Google Scholar 

  91. Z. Stachniak. Nonmonotonic theories and their axiomatic varieties. J. of Logic, Language, and Information, 4 (4): 317–334, 1995.

    Google Scholar 

  92. Z. Stachniak. Resolution Proof Systems: an Algebraic Theory. In Automated Reasoning Series, Vol. 4. Kluwer, Dordrecht, 1996.

    Google Scholar 

  93. Z. Stachniak. Extending resolution to resolution logics. J. of Experimental and Theoretical Artificial Intelligence, 3: 17–32, 1991.

    Article  Google Scholar 

  94. Z. Stachniak. Algebraic semantics for cumulative inference operations. In Proceedings of the AAAI’93, pages 444–449, 1993.

    Google Scholar 

  95. Z. Stachniak and P. O’Heam. Resolution in the domain of strongly finite logics. Fund. Inf., 13: 333–351, 1990.

    Google Scholar 

  96. W. Suchod. La méthode de Smullyan de construire le calcul n-valent de Lukasiewicz avec implication et négation. Reports on MathematicalLogic, Universities of Cracow and Katowice, 2: 37–42, 1974.

    Google Scholar 

  97. S. J. Surma. An algorithm for axiomatizing every finite logic. In D. C. Rine, editor, Computer Science and Multiple-valued Logic: Theory and Applications, pages 137–143. North-Holland, 1977.

    Google Scholar 

  98. M. Takahashi. Many-valued logics of extended Gentzen style I. Science Reports of the Tokyo Kyoiku Daigaku, 9: 271–292, 1967.

    Google Scholar 

  99. M. Takahashi. Many-valued logics of extended Gentzen style II. J. of Symbolic Logic, 35 (4): 493–528, 1970.

    Article  Google Scholar 

  100. M. Takano. Subformula property in many-valued modal logics. J. of Symbolic Logic, 59 (4): 1263–1273, 1994.

    Article  Google Scholar 

  101. A. Tarski. Logic, Semantics, Metamathematics. Oxford University Press, 1956. Reprinted by Hackett Publ. Co., Indianapolis, 1981.

    Google Scholar 

  102. S. K. Thomason. Possible worlds and many truth values. Studia Logica, 37: 195204, 1978.

    Google Scholar 

  103. A. Torrens. W-algebras which are Boolean products of members of SR[1] and CWalgebras. Studia Logica, 46 (3): 265–274, 1987.

    Article  Google Scholar 

  104. A. Urquhart. Many-valued logic. In Handbook of Philosophical Logic, volume III, pages 71–116. Reidel, Dordrecht, 1986.

    Google Scholar 

  105. J. van Heijenoort, editor. From Frege to Gödel. Harvard University Press, Cambridge, MA, 1967.

    Google Scholar 

  106. A. Wasilewska. A constructive proof of Craig’s interpolation lemma for m-valued logic. Studia Logica, 38 (3): 267–275, 1979.

    Article  Google Scholar 

  107. V. Weispfenning. Model theory of abelian Q-groups. In A. M. W. Glass and W. C. Holland, editors, Lattice-Ordered Groups, pages 41–79. Kluwer, 1989.

    Google Scholar 

  108. R. Wôjcicki. Some remarks on the consequence operation in sentential logic. Fund. Math., 68: 269–279, 1970.

    Google Scholar 

  109. R. Wôjcicki. Theory of Logical Calculi: Basic Theory of Consequence Operations. Kluwer, 1988.

    Google Scholar 

  110. R. Wöjcicki and G. Malinowski, editors. Selected papers on bskasiewicz sentential calculus. Polish Academy of Sciences, Ossolineum, Wroclaw, 1977.

    Google Scholar 

  111. R. G. Wolf. A survey of many-valued logic. In Dunn and Epstein [Dunn and Epstein, 1977 ], pages 167–323.

    Google Scholar 

  112. A. Wronski. On the cardinalities of matrices strongly adequate for the intuitionistic propositional logic. Reports on Mathematical Logic, 3: 67–72, 1974.

    Google Scholar 

  113. A. Wronski. Remarks on a survey article on many valued logic by A. Urquhart. Studia Logica, 46 (3): 175–178, 1987.

    Article  Google Scholar 

  114. R. Zach. Proof theory of finite-valued logic. Master’s thesis, Technische Universität Wien, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Panti, G. (1998). Multi-Valued Logics. In: Smets, P. (eds) Quantified Representation of Uncertainty and Imprecision. Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1735-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1735-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5038-0

  • Online ISBN: 978-94-017-1735-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics