Skip to main content

Infinitesimal Theories of Uncertainty for Plausible Reasoning

  • Chapter
Book cover Quantified Representation of Uncertainty and Imprecision

Part of the book series: Handbook of Defeasible Reasoning and Uncertainty Management Systems ((HAND,volume 1))

Abstract

An important feature of human reasoning is its ability to draw conclusions from available information (which is often incomplete). The conclusions drawn this way are just plausible and can be revised in the light of new information. This kind of reasoning is called plausible or default reasoning (e.g. [Reiter, 1980]). In this chapter, we are interested in how uncertainty models such as probability theory, possibility theory [Zadeh, 1978; Dubois and Prade, 1988] or evidence theory [Shafer, 1976; Smets, 1988] can be used to deal with default information. Default information considered here are rules of the form ‘generally, if α then β’, where α and β are propositional formulas; these rules are then subject to exceptions. A typical example of a default information is ‘generally, birds fly’. Of course, a default reasoning system should be nonmonotonic (the addition of formulas to the knowledge base can make the set of plausible conclusions decrease). For instance, given the default rule ‘generally, birds fly’, and knowing that Tweety is a bird, then we intend to conclude that it flies. If we later learn that it is a penguin, however, we should withdraw this conclusion. Among the various approaches used to tackle this problem, we focus on the use of infinitesimal uncertainty values (where the uncertainty model is either probability or evidence theory), where values committed to each proposition of the language are either close to 1 or close 0, to do plausible reasoning. This chapter is neither intended to be an overview of non-standard analysis (See [Robinson, 1966; Weydert, 1995] and [Lehmann and Magidor, 1992, Appendix B] for an exposition on non-standard analysis) nor an overview of default reasoning systems. For an overview of works on default reasoning systems see [Léa Sombé, 1988; Brewka et al., 1991]. However the approaches presented in this chapter do not appear in these two overviews.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. W. Adams. The Logic of Conditionals. D. Reide, Dordrecht, 1975.

    Google Scholar 

  2. Banal et al.,1992] C. Banal, S. Kraus, J. Minker and V. S. Subrahmanian. Combining knowledge bases consisting in first order theories. Computational Intelligence,8 45–71, 1992

    Google Scholar 

  3. S. Benferhat. Raisonnement non-monotone et traitement de l’inconsistance en logique possibiliste. PhD Thesis. Université R. Sabatier, Toulouse, France, 1994.

    Google Scholar 

  4. S. Benferhat. Handling both hard rules and default rules in possibilistic logic. In Proc. of 5th International Conference on Information Processing and Management of Uncertainty in Knowledge Systems IPMU’94, 1994.

    Google Scholar 

  5. Benferhat et al.,1992] S. Benferhat, D. Dubois and H. Prade. Representing default rules in possibilistic logic. In Proc. of the 3rd Inter. Conf. on Principles of Knowledge Representation and Reasoning KR’ 92,1992.

    Google Scholar 

  6. Benferhat et al.,1993] S. Benferhat, C. Cayrol, D. Dubois, J. Lang and H. Prade. Inconsistency management and prioritized syntax-based entailment. In Proc. of the 13th Inter. Joint Conf. on AI, Chambéry,1993.

    Google Scholar 

  7. Benferhat et al.,1994c] S. Benferhat, D. Dubois and H. Prade. Représentation des connaissances conditionnelles. In Procs. of la troisième Conférence Maghrébine en Génie Logiciel et Intelligence Artificielle,Rabat, 1994.

    Google Scholar 

  8. Benferhat et al.,1994d] S. Benferhat, D. Dubois and H. Prade. Expressing independence in a possibilistic framework and its application to default reasoning. In Proc. of the 11 th Europ. Conf. on Artificial Intelligence (ECAI’94),Amsterdam, pp. 150–154, 1994.

    Google Scholar 

  9. S. Benferhat, D. Dubois and H. Prade. Beyond Counter-Examples to Non-monotonic Formalisms: A Possibility-Theoretic Analysis. In Proc 12th European Conf. on Artificial Intelligence ECAI 96, W. Wahlster, ed. pp. 652–656. John Wiley and Sons, 1996.

    Google Scholar 

  10. S. Benferhat and E. Dupin de Saint-Cyr. Contextual handling of conditional knowledge. In Procs, 6th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU96, Granada, 1996.

    Google Scholar 

  11. Benferhat et al.,1995] S. Benferhat, A. Saffiotti and R. Smets. Belief functions and default reasoning. In Procs. of UAI’95,1995.

    Google Scholar 

  12. Bezzazi and Perez, 19961 H. Bezzazi and R. P. Perez. Rational transitivity and its models. In Proceedings of 26th International Symposium on Multiple-Valued Logic, Santiago de Compostella, 1996

    Google Scholar 

  13. C. Boutilier. What is a default priority? In Proc. of the 9th Canadian Conf. on Artificial Intelligence (AI’92), Vancouver. pp. 140–147, 1992.

    Google Scholar 

  14. C. Boutilier. Towards a logic for qualitative decision theory. In Procs. of Kr’94, pp. 75–86, 1994.

    Google Scholar 

  15. G. Brewka. Preferred subtheories: an extended logical framework for default reasoning. In Proc. of the 11th Inter. Joint Conf. on Artificial Intelligence (IJCAI’89), Detroit. pp, 10431048, 1989.

    Google Scholar 

  16. G. Brewka, J. Dix and K. Konolige. A tutorial on nonmonotonic reasoning. In Proc. of the 2ndlnter. Workshop on Nonmonotonic and Inductive Logic, Brewka, Jantke and Schmitt, eds. pp. 1–88. Lecture Notes in Artificial Intelligence, Vol. 659, Springer Verlag, Berlin, 1991.

    Google Scholar 

  17. A. Darwiche and M. Goldszmidt. On the relation between Kappa calculus and probabilistic reasoning. In Proc. of UAI’94, pp. 145–153, 1994.

    Google Scholar 

  18. J. De Kleer. Using crude probability estimates to guide diagnosis. Artificial Intelligence, 45, 381–391, 1990.

    Article  Google Scholar 

  19. J. De Kleer and B. Williams. Diagnosing multiple faults. Artificial Intelligence, 32, 97–130, 1987.

    Article  Google Scholar 

  20. Dubois et al.,1992] D. Dubois, J. Lang and H. Prade. Inconsistency in possibilistic knowledge bases. To live or not live with it. In Fuzzy Logic for the Management of Uncertainty,L.A. Zadeh and J. Kacprzyk, eds. pp. 335— 351, Wiley, 1992.

    Google Scholar 

  21. Dubois et al.,1994] D. Dubois, J. Lang, H. Prade. Possibilistic logic. In Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 3,D. M. Gabbay, C. J. Hogger and J.A. Robinson, eds. pp. 439–513. Oxford University Press, 1994.

    Google Scholar 

  22. D. Dubois and H. Prade. On several representations of an uncertain body of evidence. In Fuzzy Information and Decision Processes, M. M. Gupta and E. Sanchez, eds. pp. 167–181. North- Holland, Amsterdam, 1982.

    Google Scholar 

  23. D. Dubois, H. Prade (with the collaboration of H. Farreny, R. MartinClouaire and C. Testemale). Possibility Theory An Approach to Computerized Processing of Uncertainty. Plenum Press, New York, 1988.

    Google Scholar 

  24. Dubois and Prade, 19901 D. Dubois and H. Prade. The logical view of conditioning and its application to possibility and evidence theories. Int. J. of Approximate Reasoning, 4, 23–46, 1990.

    Article  Google Scholar 

  25. D. Dubois and H. Prade. Epistemic entrenchment and possibilistic logic. Artificial Intelligence, 50, 223–239, 1991.

    Article  Google Scholar 

  26. D. Dubois and H. Prade. Conditional objects and non-monotonic reasoning. In Proc. of the 2nd Inter. Conf on Principles of Knowledge Representation and Reasoning KR’91, pp. 175–785, 1991.

    Google Scholar 

  27. D. Dubois and H. Prade. Conditional objects, possibility theory and default rules. In Conditionals: From Philosophy to Computer Sciences, G. Crocco, L. Farinas del Cerro and A. Herzig, eds. pp. 311–346. Oxford University Press, 1995.

    Google Scholar 

  28. Dubois et al.,1993] D. Dubois, H. Prade and S. Sandri. On possibility/probability transformations. In Fuzzy Logic,R. Lowen and M. Roubens eds. pp. 103–112. Kluwer Academic Publishers, 1993.

    Google Scholar 

  29. Dubois et al.,1994b] D. Dubois, F Dupin and H. Prade. Updating transition constraints and possibistic Markov Chains. In Proc. IPMU’94,pp.826–830, 1994.

    Google Scholar 

  30. Dupin de Saint Cyr et al.,1994] F. Dupin de Saint Cyr, J. Lang and T. Schiex. Penalty logic and its link with Dempster–Shafer theory. In Proc. of UAI’94,pp. 204–211,1994.

    Google Scholar 

  31. D. M. Gabbay. Theoretical foundations for non-monotonic reasoning in expert systems. In Logics and models of Concurrent Systems, K. R. Apt, ed. pp. 439–457. Springer Verlag, Berlin, 1985.

    Google Scholar 

  32. P. Gärdenfors. Knowledge in Flux—Modeling the Dynamic of Epistemic States. The MIT Press, Cambridge, MA, 1988.

    Google Scholar 

  33. Gärdenfors, 19901 P. Gärdenfors. Belief revision and non-monotonic logic: two sides of the same coi? In Proc. of the 9th Europ. Conf. on Artificial intelligence (ECAI’90), Stockholm, pp. 768–773, 1990

    Google Scholar 

  34. P. Gärdenfors and D. Makinson. Nonmonotonic inference based on expectations. Artificial Intelligence, 65, 197–245, 1994.

    Article  Google Scholar 

  35. Geffner, 19921 H. Geffner. Default Reasoning: Causal and Conditional Theories, The MIT Press, Cambridge, MA, 1992.

    Google Scholar 

  36. M. Goldszmidt. Qualitative Probabilities: A Normative Framework for Commonsense Reasoning. PhD Thesis, University of California, 1992.

    Google Scholar 

  37. M. Goldszmidt, P. Morris and J. Pearl. A maximum entropy approach to non-monotonic reasoning. In Proc. of the National American Conf. on Artificial Intelligence (AAAI’90), pp. 646–652, 1990.

    Google Scholar 

  38. M. Goldszmidt and J. Pearl. On the relation between rational closure and System-Z. In Proc. of the 9th American Assoc. for Artificial Intelligence Conf. (AAAI’91), Anaheim, CA, pp. 399–404, 1991.

    Google Scholar 

  39. Goldszmidt and Pearl, 1991b1 M. Goldszmidt and J. Pearl. On the consistency of defeasible databases. Artificial Intelligence, 52, 121–149, 1991.

    Article  Google Scholar 

  40. M. Goldszmidt and J. Pearl. Rank-based systems: a simple approach to belief revision, belief update, and reasoning about evidence and actions. In Procs. of KR’92, pp. 661–672, 1992.

    Google Scholar 

  41. M. Henrion, G. Provan, B. Del Favero and G. Sanders. An experimental comparaison of numerical and qualitative probabilistic reasoning. In Proc. of UAJ’94, pp. 319–326, 1994.

    Google Scholar 

  42. E. Hisdal. Conditional possibilities independence and noninteraction. Fuzzy Sets and Systems, 1, 283–297, 1978.

    Article  Google Scholar 

  43. Kraus et al.,1990] 5. Kraus, D. Lehmann and M. Magidor. Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence,44 167–207,1990.

    Google Scholar 

  44. K. B. Laskey and R. E. Lehner. Assumption, beliefs and probabilities. Artificial Intelligence, 41, 65–77, 1990.

    Article  Google Scholar 

  45. J. Lang. Logique possibiliste: Aspects formels, déduction automatique, et applications. Thèse de Doctorat, Université P. Sabatier, Toulouse, 1991.

    Google Scholar 

  46. J. Lang. Syntax-based default reasoning as probabilistic model-based diagnosis. In Proc. of UAI’94, pp. 391–398, 1994.

    Google Scholar 

  47. J. Lang. Conditional desires and utilities—an alternative logical approach to qualitative decision theory. To appear in ECA/’96, 1996.

    Google Scholar 

  48. Inférence non-classique en intelligence artificielle. Teknea, Toulouse, 1988.

    Google Scholar 

  49. D. Lehmann. What does a conditional knowledge base entail? In Proc. of 1st Inter. Conf on Principles of Knowledge Representation and Reasoning (KR’89), pp. 357–367, 1989.

    Google Scholar 

  50. Lehmann, 19931 D. Lehmann.Another perspective on default reasoning. Technical report, 1993.

    Google Scholar 

  51. D. Lehmann and M. Magidor. What does a conditionanal knowledge base entail? Artficial Intelligence, 55, 1–60, 1992.

    Article  Google Scholar 

  52. D. Lewis. Counterfactuals and comparative probability, J. of Philosophical Logic, 2, 1973.

    Google Scholar 

  53. D. Makinson. General patterns in non-monotonic reasoning. In Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 3, D. M. Gabbay, C. J. Hogger and J.A. Robinson, eds. Oxford University Press, 1994.

    Google Scholar 

  54. Neufeld. A probabilistic commonsense reasoner. Int. J. of Intelligent Systems, 5, 565594, 1990.

    Google Scholar 

  55. J.Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausiblelnference. Morgan Kaufmann Publ. Inc., San Mateo, CA, 1988.

    Google Scholar 

  56. J. Pearl. System Z: A natural ordering of defaults with tractable applications to default reasoning. In Proc. of Theoretical Aspects of Reasoning about Knowledge,pp. 121–135,1990.

    Google Scholar 

  57. G. Pinkas. Propositional nonmonotonic reasoning and inconsistency in symmetric neural networks. In Proc. of the 12th IJCAI, Sydney, Australia, pp. 525–530. Morgan-Kaufmann, 1991.

    Google Scholar 

  58. Poole, 19931 D. Poole. Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities. In Proc. of IJCAI’93, pp. 606–612, 1993.

    Google Scholar 

  59. Reggia et al.,1985] J. A. Reggia, D. S. Nau and P. Y. Wang. A formal model of diagnosis inference. Information Sciences,37, 227–285,1985.

    Google Scholar 

  60. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13, 81–132, 1980.

    Article  Google Scholar 

  61. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32, 57–95, 1987.

    Article  Google Scholar 

  62. N. Rescher and R. Manor. On inference from inconsistent premises. Theory and Decision, 1, 179–219, 1970.

    Article  Google Scholar 

  63. Robinson, 19661 A. Robinson. Non-standardAnanlysis. Noth-Holland, Amsterdam, 1966.

    Google Scholar 

  64. G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, NJ, 1976.

    Google Scholar 

  65. Y. Shoham. Reasoning About Change Time and Causation from the Standpoint of Artificial Intelligence. The MIT Press, Cambridge, MA, 1988.

    Google Scholar 

  66. Ph. Smets. Belief functions. In Non-Standard Logics for Automated Reasoning, Ph. Smets, E. H. Mamdani, D. Dubois and H. Prade, eds. pp. 253–286. Academic Press, NY, 1988.

    Google Scholar 

  67. Ph. Smets and R. Kennes. The transferable belief model. Artificial Intelligence, 66, 191–234, 1994.

    Article  Google Scholar 

  68. Ph. Smets and S. Benferhat. Belief functions for logical problems: default logic by c-calculus. Presented at Dagstuhl Seminar on Automated Practical Reasoning and Argumentation, 1993.

    Google Scholar 

  69. P. Snow. Standard probability distributions described by rational default entailment. Technical Report, 1996.

    Google Scholar 

  70. W. Spohn. Ordinal conditional functions: a dynamic theory of epistemic states. In Causation in Decision, Belief Change and Statistics, W. Harper and B. Skyrms, eds, pp. 105–134, 1988.

    Google Scholar 

  71. W. Spohn. A general non-probabilistic theory of inductive reasoning. In Uncertainty in Artificial Intelligence 4, R. D. Shachter and collegues, eds. pp. 149–158. North-Holland, Amsterdam, 1990.

    Google Scholar 

  72. Wellman and Henrion, 19911 M. P. Wellman and M. Henrion. Qualitative intercausal relations, or explaining ‘explaining away’. In Proc. of KR’91, pp. 535- -546, 1991.

    Google Scholar 

  73. E. Weydert. Defaults and infinitesimals defeasible inference by nonarchimedean entropy maximization. In Procs. of UAJ’95, 1995.

    Google Scholar 

  74. Yager, 19831 R. R. Yager. An introduction to applications of possibility theory. Human Systems Management, 3, 246–269, 1983.

    Google Scholar 

  75. Zadeh, 19781 L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28, 1978.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Benferhat, S. (1998). Infinitesimal Theories of Uncertainty for Plausible Reasoning. In: Smets, P. (eds) Quantified Representation of Uncertainty and Imprecision. Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1735-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1735-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5038-0

  • Online ISBN: 978-94-017-1735-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics