Skip to main content

Genetic engineering and its potential for mercury(II) bioremediation

  • Chapter
Global Environmental Biotechnology
  • 287 Accesses

Abstract

Mercury has been recognised as one of the most toxic heavy metals and has featured in the most serious outbreaks of metal poisoning among the general population, e.g. Minamata disease [1]. In the aqueous environment, mercuric ion in sediments is subject to methylation by microorganisms and abiotic processes [2], forming more toxic methylmercury [CH3Hg+). Bioaccumulation of methyl mercury through food chains causes potential risk to consumers of fish or shellfish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kurland L T, Faro S N and Sieldler H 1960 Minamata disease: The outbreak of a neurological disorder in Minamata, Japan, and its relationship to the ingestion of seafood contaminated by mercuric compounds. World Neurol. 1, 370–395.

    CAS  Google Scholar 

  2. Spray D J and Wiener J G 1991 Metal bioavailability and toxicity to fish in low-alkalinity lakes: A critical review. Environ. Pollut. 71, 243–304.

    Article  Google Scholar 

  3. Osteen A B and Bibler J P 1991 Treatment of radioactive laboratory waste for mercury removal. Water Air Soil Pollut. 56, 63–74.

    Article  CAS  Google Scholar 

  4. Gadd G M and White C 1993 Microbial treatment of metal pollution a working biotechnology? Trends Biotechnol. 11, 353–359.

    Article  CAS  Google Scholar 

  5. Bedell G W and Darnall D W 1990 Immobilization of nonviable biosorbent, algal biomass for the recovery of metal ions. In Biosorption of Heavy Metals. Ed. B. Volesky pp. 313–326. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  6. Chang J S and Hong J 1994 Biosorption of mercury by the inactivated cells of Pseudomonas aeruginosa PU21 (Rip64). Biotechnol. Bioeng. 44, 999–1006.

    Article  CAS  Google Scholar 

  7. Chen S L and Wilson D B Genetic engineering of bacteria for mercury bioaccumulation: Construction of Escherichia coli expressing metallothionein and a mercury uptake system. Unpublished ms.

    Google Scholar 

  8. Yanisch-Perron C, Vieira J and Messing J 1985 Improved M13 phage cloning vectors and host strains: Nucleotide sequence of the M13mp18 and pUC19 vectors and new Escherichia coli host strain construction. Gene 33, 103–119.

    Article  CAS  Google Scholar 

  9. Drapeau A J, Laurence R A, Saint-Germain G, Harbec P S and Lambert N G 1983 Bioaccumulation of heavy metals by microorganisms. Sci. Tech. Eau. 16, 359–363.

    CAS  Google Scholar 

  10. Hatch W R and Ott W L 1968 Determination of sub-microgram quantities of mercury by atomic spectrophotometry. Anal. Chem. 40, 2085–2087.

    Article  CAS  Google Scholar 

  11. Darimont A and Frenay J 1990 Metals in aqueous solutions. In Biosorption of Heavy Metals. Ed. B Volesky. pp. 65–80. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  12. Pazirandeh M, Chrisey L A, Mauro J M, Campbell J R and Gaber B P 1995 Expression of the Neurospora crassa metallothionein gene in Escherichia coli and its effect on heavy-metal uptake. Appl. Microbiol. Biotechnol. 43, 1112–1117.

    Article  CAS  Google Scholar 

  13. Kusano T, Ji G Y, Inoue C and Silver S 1990 Constitutive synthesis of a transport function encoded by the Thiobacillus ferrooxidans mer C gene cloned in Escherichia coli. J Bacteriol. 172, 2688–2692.

    CAS  Google Scholar 

  14. Archibald F and Duong M N 1984 Manganese acquisition by Lactobacillus plantarum. J. Bacteriol. 158, 1–8.

    CAS  Google Scholar 

  15. Crosa J H 1989 Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol. Rev. 53, 517–530.

    CAS  Google Scholar 

  16. Sahlman L and Granstroem Skaerfstad E 1993 Mercuric ion binding abilities of MerP variants containing only one cysteine. Biochem. Biophys. Res. Commun. 196, 583–588.

    Article  CAS  Google Scholar 

  17. Morby A P, Hobman J L and Born N L 1995 The role of cysteine residues in the transport of mercuric ions by the Tn501 MerT and MerP mercury-resistance proteins. Mol. Microbiol. 17, 25–35.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, S., Wilson, D.B. (1997). Genetic engineering and its potential for mercury(II) bioremediation. In: Wise, D.L. (eds) Global Environmental Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1711-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1711-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4836-3

  • Online ISBN: 978-94-017-1711-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics