Skip to main content

Detection of heavy metal ion resistance genes in lead-resistant bacteria

  • Chapter
Global Environmental Biotechnology

Abstract

Many agricultural and industrial practices have led to environmental pollution by heavy metal ions. Metals, such as zinc, cobalt, cadmium, nickel, copper and chromium, are used for several industrial applications, such as production of steel and other alloys, galvanisation of iron, electroplating, manufacture of batteries, TV tubes and pigments. Copper has been used for a number of years as an active ingredient of bactericides and fungicides and as a growth enhancer of pigs. Mercury is a by-product of burning coal and petroleum products, and it is also used in household and hospital disinfectant. Contamination of soil by lead occurs following the use of lead arsenate insecticides. High levels of lead in wastewaters may originate from combustion of leaded gasoline, coal burning or metal smelting. Mining and leaching from natural deposits also contribute to environmental contamination. A number of sites contaminated by heavy metals around the world are associated with human activities, such as discharge of wastes into natural waterways, various metallurgical industries, accidental spills or mining [1–8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barkay T and Olson B H 1986 Phenotypic and genotypic adaptation of aerobic heterotrophic sediment bacterial communities to mercury stress. Appl. Environ. Microbiol. 52, 403–406.

    CAS  Google Scholar 

  2. Diets L and Mergeay M 1990 DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Appl. Environ. Microbiol. 56, 1485–1491.

    Google Scholar 

  3. Dressler C, Kues U, Nies D and Friedrich B 1991 Determinants encoding resistance to several heavy metals in newly isolated copper-resistant bacteria. Appl. Environ. Microbiol. 57, 3079–3085.

    Google Scholar 

  4. Mergeay M, Nies D, Schlegel H G, Gerits J, Charles P and Van Gijsegem F 1985 Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 163, 328–334.

    Google Scholar 

  5. Nakamura K and Silver S 1994 Molecular analysis of mercury-resistant Bacillus isolates from sediment of Minamata Bay, Japan. Appl. Environ. Microbiol. 60, 4596–4599.

    CAS  Google Scholar 

  6. Osbom A M, Bruce K D, Strike P and Ritchie D A 1993 Polymerase chain reaction-restriction fragment length polymorphism analysis shows divergence among mer determinants from Gram-negative soil bacteria indistinguishable by DNA-DNA hybridisation. Appl. Environ. Microbiol. 59, 4024–4030.

    Google Scholar 

  7. Rochelle P A, Wetherbee M K and Olson B H 1991 Distribution of DNA sequences encoding narrow-and broad-spectrum mercury resistance. Appl. Environ. Microbiol. 57, 1581–1589.

    Google Scholar 

  8. Schmidt T and Schlegel H G 1994 Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J. Bacteriol. 176, 7045–7054.

    CAS  Google Scholar 

  9. Brown N L, Rouch D A and Lee B T O 1992 Copper resistance determinants in bacteria. Plasmid 27, 41–51.

    Article  CAS  Google Scholar 

  10. Gadd G M 1992 Heavy metal pollutants: Environments and biotechnological aspects. In Encyclopaedia of Microbiology. Ed. J Lenderberg. Academic Press Inc., CA, USA.

    Google Scholar 

  11. Bogdanova E S, Mindlin S Z, Kalyaeva E S and Nikiforov V G 1988 The diversity of mercury reductases among mercury-resistant bacteria. FEBS Letters 234, 280–282.

    Article  CAS  Google Scholar 

  12. Khesin R B and Karasyova E V 1984 Mercury-resistant plasmids in bacteria from a mercury and antimony deposit area. Mol. Gen. Genet. 197, 280–285.

    Article  CAS  Google Scholar 

  13. Griffin H G, Foster T J, Silver S and Misra T K 1987 Cloning and DNA sequence of the mercuric-and organomercurial-resistance determinants of plasmid pDU1358. Proc. Natl. Acad. Sci. USA 84, 3112–3116.

    Google Scholar 

  14. Hobman J, Kholodii G, Nikiforov V, Ritchie D A, Strike P and Yurieva O 1994 The sequence of the mer operon of pMER327/419 and transposon ends of pMER327/419, 330 and 05. Gene 146, 73–78.

    CAS  Google Scholar 

  15. Jobling M G, Peters S E and Ritchie D A 1988 Restriction pattern and polypeptide homology among plasmid-bome mercury resistance determinants. Plasmid 20, 106–112.

    Article  CAS  Google Scholar 

  16. Laddaga R A, Chu L, Misra T K and Silver S 1987 Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. Proc. Nad. Acad. Sci USA 84, 5106–5110.

    Google Scholar 

  17. Misra T K 1992 Bacterial resistances to inorganic mercury salts and organomercurials. Plasmid 27, 4–16.

    Article  CAS  Google Scholar 

  18. Misra T K, Brown N, Fritzinger D C, Pridmore R D, Barnes W M, Haberstroh L and Silver S 1984 Mercuric ion-resistance operons of plasmid R100 and transposon Tn501: The beginning of the operon including the regulatory region and the first two structural genes. Proc. Natl. Acad. Sci. USA 81, 5975–5979.

    Google Scholar 

  19. Wang Y, Moore M, Levinson H S, Silver S, Walsh C and Mahler L 1989 Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. with broad-spectrum mercury resistance. J. Bacteriol. 171, 83–92.

    CAS  Google Scholar 

  20. Bender C L, Malvick D K, Conway K E, George S and Pratt P 1990 Characterization of pXV10A, a copper resistance plasmid in Xanthomonas campestris pv. vesicatoria. Appl. Environ. Microbiol. 56, 170–175.

    Google Scholar 

  21. Cervantes C, Ohtake H, Chu L, Misra T K and Silver S 1990 Cloning, nucleotide sequence and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J. Bacteriol. 172, 287–291.

    CAS  Google Scholar 

  22. Chen C-M, Misra T K, Silver S and Rosen B P 1986 Nucleotide sequence of the structural genes for an anion pump: The plasmid-encoded arsenical resistance operon. J. Biol. Chem. 261, 15030–15038.

    Google Scholar 

  23. Cooksey D A, Azad H R, Cha J-S and Lim C-K 1990 Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato. Appl. Environ. Microbiol. 56, 431–435.

    Google Scholar 

  24. Liesegang H, Lemke K, Siddiqui R A and Schlegel H G 1993 Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J. Bacteriol. 175, 767–778.

    CAS  Google Scholar 

  25. Nies D H 1992 Resistance to cadmium, cobalt, zinc and nickel in microbes. Plasmid 27, 17–28.

    Article  CAS  Google Scholar 

  26. Nies D H, Nies A, Chu L and Silver S 1989 Expression and nucleotide sequence of a plasmiddetermined divalent cation efflux system from Alcaligenes eutrophus. Proc. Natl. Acad. Sci USA 86, 7351–7355.

    Google Scholar 

  27. Nies A, Nies D H and Silver S 1990 Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J. Biol. Chem. 265, 5648–5653.

    Google Scholar 

  28. Nucifora G, Chu L, Misra T K and Silver 5 1989 Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc. Natl. Acad. Sci. USA 86, 3544–3548.

    Google Scholar 

  29. Silver S and Walderhaug M 1992 Gene regulation of plasmid-and chromosome-determined inorganic ion transport in bacteria. Microbiol. Rev. 56, 195–228.

    CAS  Google Scholar 

  30. Stoppel R-D and Schlegel H G 1995 Nickel-resistant bacteria from anthropogenically nickel-polluted and naturally nickel-percolated ecosystems. Appl. Environ. Microbiol. 61, 2276–2285.

    CAS  Google Scholar 

  31. Williams J R, Morgan A G, Rouch D A, Brown N L and Lee B T O 1993 Copper-resistant enteric bacteria from United Kingdom and Australian piggeries. Appl. Environ. Microbiol. 59, 7027–7033.

    Google Scholar 

  32. Barkay T, Fouts D L and Olson B H 1985 Preparation of a DNA gene probe for detection of mercury resistance genes in Gram-negative bacterial communities. Appl. Environ. Microbiol. 49, 686–692.

    Google Scholar 

  33. Barkay T, Liebert S and Gillman M 1989 Hybridisation of DNA probes with whole-community genome for detection of genes that encode microbial responses to pollutants: mer genes and Hg“ resistance. Appl. Environ. Microbiol. 55, 1574–1577.

    Google Scholar 

  34. Bruce K D, Hioms W D, Hobman J L, Osborn A M, Strike P and Ritchie D A 1992 Amplification of DNA from native populations of soil bacteria using the polymerase chain reaction. Appl. Environ. Microbiol. 58, 3413–3416.

    Google Scholar 

  35. Holben W E, Jansson J K, Chelm B K and Tiedje J M 1988 DNA probe method for specific microorganisms in the soil bacterial community. Appl. Environ. Microbiol. 54, 703–711.

    Google Scholar 

  36. Manovski S, Roddick F A and Britz M L 1992 Isolation of lead-tolerant microbes from a contaminated site in Melbourne, Australia. In Soil Decontamination Using Biological Processes, EFB Task Group on Soil Decontamination Using Biological Processes, DECHEMA, Frankfurt, Germany, pp. 689–695.

    Google Scholar 

  37. Reade E (Ed.) 1981 Microbial techniques. School of Microbiology, University of Melbourne, Australia.

    Google Scholar 

  38. Sambrook J, Fritsch E F and Maniatis T 1989 Molecular cloning: A laboratory manual ( 2nd Ed. ). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  39. Haynes J A and Britz M L 1990 Effects of growth conditions on electro-transformation frequencies of Corynebacterium glutamicum. J. Gen. Microbiol. 136, 255–263.

    Article  CAS  Google Scholar 

  40. Southern E M 1975 Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.

    Article  CAS  Google Scholar 

  41. Church G M and Gilbert W 1984 Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995.

    Article  CAS  Google Scholar 

  42. Brown N L, Barrett S R, Camakaris J, Lee B T O and Rouch D A 1995 Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol. Microbiol. 17, 1153–1166.

    Google Scholar 

  43. Sanger F, Nicklen S and Coulson A R 1977 DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–6467.

    Google Scholar 

  44. Diets L, Dong Q, van der Lelie D, Baeyens W and Mergeay M 1995 The czc operon of Alcaligenes eutrophus CH34: From resistance mechanism to the removal of heavy metals. J. Ind. Microbiol. 14, 142–153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal Bhave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Trajanovska, S., Britz, M.L., Bhave, M. (1997). Detection of heavy metal ion resistance genes in lead-resistant bacteria. In: Wise, D.L. (eds) Global Environmental Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1711-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1711-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4836-3

  • Online ISBN: 978-94-017-1711-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics