Skip to main content

Dynamic Tolerance Analysis, part I: A theoretical framework using bondgraphs

  • Conference paper
Global Consistency of Tolerances

Abstract

A theoretical framework is proposed by which the effect of tolerances in combination with physical effects such as wear can be analysed on the dynamic behavior of mechanisms. The framework uses bondgraphs in order to simulate the dynamic behavior under the influence of tolerances and other physical effects. The paper describes how a geometric model, including it’s tolerances, can be transformed into a corresponding bondgraph model that on it’s part consists of submodels. Based on this bondgraph model, simulations could be performed which could provide insight in the dynamic behavior of the mechanism. The paper details on how the different geometric tolerances such as form, orientation, position as well as size and clearances can be accounted for in a bondgraph model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjørke Ø,1978, Computer Aided Tolerancing,Tapir Publishers.

    Google Scholar 

  2. Bjørke Ø., 1995, Manufacturing Systems Theory,Tapir Publishers.

    Google Scholar 

  3. Chase K.W., Gao J., Magleby S., Sorenson C.D., 1996, Including geometric feature variations in tolerance analysis of mechanical assemblies, accepted for publication in IIE transactions.

    Google Scholar 

  4. Cleghorn W.L., Fenton R.G., Wu J—F., 1993, Optimum tolerancing of planar mechanisms based on an error sensitivity analysis, J. of Mechanical Design, Vol. 115, 307–313.

    Google Scholar 

  5. Clément A., Rivière A., Temmerman M., 1994, Cotation tridimensionelle des systèmes mécaniques, théorie pratique,PYC Edition, Yvry—Sur—Seine Cedex (ISBN 2–85330–132–X), in French (English version: Three dimensional tolerancing of mechanical systems,Addison Wesley Editions).

    Google Scholar 

  6. Funabashi H., Ogawa K., Horie M., 1978, A Dynamic analysis of mechanisms with clearances, Bulletin of the JSME, Vol. 21, no 161, 1652–1659.

    Article  Google Scholar 

  7. Funabashi H., Ogawa K., Horie M., Iida H., 1980, A Dynamic analysis of the plane crank— and rocker mechanisms with clearances, Bulletin of the JSME, Vol. 23, no 177, 446–452.

    Article  Google Scholar 

  8. Funk W., Stolzenberg J., 1995, Rechnerunterstützte Toleran-zanalyse ungleichmäßig übersetzender Getriebe, Konstruktion, Vol. 47, 363–369

    Google Scholar 

  9. Joskowicz L., Sacks E., Srinivasan V., 1997, Kinematic tolerance analysis, CAD, Vol. 29, No. 2, 147–157

    Google Scholar 

  10. Karnopp D.C., Margolis D.C., Rosenberg R.C., 1990, System dynamics: a unified approach, 2nd edition, John Wiley Sons, New York.

    Google Scholar 

  11. Liu S.C., Hu S.J., On offset finite element model and its applications in predicting sheet metal assembly variation, Int. J. Mach. tools Manufact., Vol. 35, No. 11, 1995, 1545–1557.

    Article  Google Scholar 

  12. Miedema B., Mansour W.M., 1976, Mechanical joints with clearance: a three mode model, ASME Journal of engineering for Industry, Vol. 98, 1319–1323

    Article  Google Scholar 

  13. Rivière A., Gaunet D., Dubé I., Desrochers A., 1994, “Une approche matricielle pour la représentation des zones de tolérance et des jeux”, Proceedings FORUM 1994 de la SCGM (Société Canadienne de Génie Mécanique), McGill University, 27–29 June.

    Google Scholar 

  14. Sakamoto Y., Funabashi H., Horie M., Ogawa K., 1990, A synthesis of planar mechanisms with pairs of optimum tolerances, JSMEInt. Journal, Series III, Vol. 33. No. 2, 139–144.

    Google Scholar 

  15. Salomons, O.W., 1995, “Computer support in the design of mechanical products, constraint specification and satisfaction in feature based design for manufacturing”, Ph.D. Thesis, University of Twente, Enschede (NL).

    Google Scholar 

  16. Salomons, O.W., Jonge Poerink, H.J.,Haalboom, F.J, Slooten, F. van, Houten, F.J.A.M. van, Kals H.J. J. 1996a, A Computer Aided Tolerancing Tool I: Tolerance Specification, Computers in Industry, Vol. 31, No. 2, 1996, 161–174.

    Article  Google Scholar 

  17. Salomons O.W., Houten F.J.A.M. van, Kals H.J.J., 1997, Current Status of CAT systems, proc. Int. CIRP Seminar on Computer Aided Tolerancing, Toronto, (to be published by Chapman Hall).

    Google Scholar 

  18. Salomons O.W., Zijlstra J., Zwaag J.A. van der, Houten F.J.A.M. van, Towards dynamic tolerance analysis using bondgraphs, proc. of DETC’98, Design Automation Conference, no. DETC98/DAC-5631, September, Atlanta, 1998.

    Google Scholar 

  19. Sellem E., Rivière A., Tolerance analysis of deformable assemblies, Proce.edings of DETC98: ASME Design engineering Technical Conferences, September 13–16, 1998, Atlanta, GA.

    Google Scholar 

  20. Söderberg, R., Robust Design of CAT Tools, Proc. of DETC98: 1998 ASME Design Engineering Technical Conference, September 1998, Atlanta, USA.

    Google Scholar 

  21. Söderberg, R., Wandebäck, F., Wahlborg, P., The Subcontractors role in Computer Aided Tolerance Management, Proceedings of DETC98: 1998 ASME Design Engineering Technical Conference, September 1998, Atlanta, USA.

    Google Scholar 

  22. Srinivasan R.S., 1994, A theoretical framework for functional form tolerances in design form manufacturing, PhD thesis, University of Texas at Austin, available via WWW: http://shimano.me.utexas.edu.srini.html

  23. Suzuki H., Kase K., Kato K., Kimura F., 1996, Physically based modelling for evaluating shape variations, in: Computer Aided Tolerancing, ed. Kimura F., Chapman Hall.

    Google Scholar 

  24. Townsend M.A., Mansour W.M., 1975, A pendulating model for mechanisms with clearances in the revolutes, ASME J. for Engineering for Industry, Vol. 97, 354–358.

    Article  Google Scholar 

  25. Vries T.J.A. de, 1994, Conceptual design of controlled electro—mechanical systems, a modeling perspective, PhD thesis, University of Twente, Enschede, NL.

    Google Scholar 

  26. Wisniewski D.M., Gomer P., 1997, Tolerance analysis using VSA-3D for engine applications, proc. 5th. Int. CIRP Seminar on Computer Aided Tolerancing, Toronto, April, 361–372

    Google Scholar 

  27. Zijlstra J., 1997, Dynamic tolerance analysis using FROOM 20—sim, MSc thesis, PT-616, University of Twente, Enschede

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Salomons, O.W., van der Zwaag, J.A., Zijlstra, J., van Houten, F.J.A.M. (1999). Dynamic Tolerance Analysis, part I: A theoretical framework using bondgraphs. In: van Houten, F., Kals, H. (eds) Global Consistency of Tolerances. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1705-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1705-2_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5198-1

  • Online ISBN: 978-94-017-1705-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics