Skip to main content
  • 223 Accesses

Abstract

In triangulated surface meshes, there are often very noticeable size variances (the vertices are distributed unevenly). The presented noise of such surface meshes is therefore composite of vast frequencies. In this chapter, we solve a diffusion partial differential equation numerically for noise removal of arbitrary triangular manifolds using an adaptive time discretization. The proposed approach is simple and is easy to incorporate into any uniform timestep diffusion implementation with significant improvements over evolution results with the uniform timesteps. As an additional alternative to the adaptive discretization in the time direction, we also provide an approach for the choice of an adaptive diffusion tensor in the diffusion equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ed B. Harr Romeny. Geometry Driven Diffusion in Computer Vision. Boston, MA: Kluwer, 1994.

    Google Scholar 

  2. C. Bajaj and G. Xu. Smooth Adaptive Reconstruction and Deformation of Free-Form Fat Surfaces. TICAM Report 99–08, March, 1999, Texas Institute for Computational and Applied Mathematics, The University of Texas at Austin, 1999.

    Google Scholar 

  3. C. Bajaj and G. Xu. Anisotropic Diffusion of Noisy Surfaces and Noisy Functions on Surfaces. TICAM Report 01–07, February 2001, Texas Institute for Computational and Applied Mathematics, The University of Texas at Austin, 2001,.

    Google Scholar 

  4. U. Clarenz, U. Diewald, and M. Rumpf. Anisotropic Geometric Diffusion in Surface Processing. In Proceedings of Viz2000, IEEE Visualization, pages 397–505, Salt Lake City, Utah, 2000.

    Google Scholar 

  5. M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow. SIGGRAPH99, pages 317–324, 1999.

    Google Scholar 

  6. M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Discrete Differential-Geometry Operators in nD

    Google Scholar 

  7. http://www.multires.caltech.edu/pubs/ 2000.

    Google Scholar 

  8. M. do Carmo. Riemannian Geometry. Boston, 1992.

    Google Scholar 

  9. J. Jost. Riemannian Geometry and Geometric Analysis, Second Edition. Springer, 1998.

    Google Scholar 

  10. C. T. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis. Technical report, Department of Mathematices, University of Utah, 1978.

    Google Scholar 

  11. P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. In IEEE Computer Society Workshop on Computer Vision, 1987.

    Google Scholar 

  12. T. Preußer and M. Rumpf. An adaptive finite element method for large scale image processing. In Scale-Space Theories in Computer Vision, pages 232–234, 1999.

    Google Scholar 

  13. S. Rosenberg. The Laplacian on a Riemannian Manifold. Cambridge, Uviversity Press, 1997.

    Book  MATH  Google Scholar 

  14. G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge, University Press, 2001.

    Book  MATH  Google Scholar 

  15. J. Stam. Fast Evaluation of Loop Triangular Subdivision Surfaces at Arbitrary Parameter Values. In SIGGRAPH ‘88 Proceedings, CD-ROM supplement, 1998.

    Google Scholar 

  16. T. F. Walsh. P Boundary Element Modeling of the Acoustical Transfer Properties of the Human Head/Ear. PhD thesis, Ticam, The University of Texas at Austin, 2000.

    Google Scholar 

  17. J. Warren. Subdivision method for geometric design, 1995.

    Google Scholar 

  18. J. Weickert. nisotropic Diffusion in Image Processing. B. G. Teubner Stuttgart, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bajaj, C.L., Xu, G. (2004). Adaptive Surfaces Fairing by Geometric Diffusion. In: Sarfraz, M. (eds) Geometric Modeling: Techniques, Applications, Systems and Tools. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1689-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1689-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6518-6

  • Online ISBN: 978-94-017-1689-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics