Skip to main content

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 9))

Abstract

A method for wildlife habitat evaluation, based on statistical methods and Decision Theory is developed. The aim is to provide tools for an adequate management of wildlife resources, replacing empirical appreciation of habitats with scientific evaluation, increasing predictability and reducing dependence on the empirical knowledge of experienced practitioners. The method uses multiple logistic regression to predict the probability of occurrence of the studied species, based on a set of environmental variables. The transformation from probability values to occurrence predictions is done using Decision Theory, which also establishes the conditions of applicability of the model. The method is easily integrable with Geographic Information Systems, allowing the efficient use of large sets of environmental data and the application of different decision criteria for each management unit. The method is illustrated by the application to a case study: the distribution in a private game reserve of wild rabbit (Oryctolagus cuniculus L. 1758), one of the most important Portuguese game species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berry, K.H. (1984) Introduction: development, testing and application of Wildlife-Habitat Models, in J. Verner, M. Morrison and C.J. Ralph (eds.), Wildlife 2000. Modelling Habitat Relationships of Terrestrial Vertebrates, The University of Wisconsin Press, pp. 3–4.

    Google Scholar 

  • Borralho, R., Rego, F., Palomares, F., and Hora, A. (1996) The distribution of the Egyptian mongoose Herpestes ichneumon (L.) in Portugal, Mammal Rev. 26 (1), 1–8.

    Google Scholar 

  • Cardoso, J.C. (1965) Os solos de Portugal. Sua classificaçâo, caracterizaçäo e génese. /- A sul do rio Tejo, Secretaria de Estado da Agricultura, Direcçäo-Geral dos Serviços Agricolas, Lisboa.

    Google Scholar 

  • Cardoso, J.C. (1974) A classificaçäo dos solos de Portugal. Boletim de Solos do Serviço de Reconhecimento e Ordenamento Agrdrio 17, 14–46.

    Google Scholar 

  • Carmo, P.L., Romdo C.O. and Santos, A.M. (1986) Avaliaçâo de potencialidades cinegéticas - método HEP, Comunicaçóes do Congresso Florestal Nacional, Lisboa.

    Google Scholar 

  • Cochran, W. G. (1954) Some methods for strengthening the common xz Tests, Biometrics 10, 417–451.

    Article  MathSciNet  MATH  Google Scholar 

  • Daniel, W.W. (1978) Applied Nonparametric Statistics,Houghton Mifflin Company.

    Google Scholar 

  • Donovan, M.L., Rabe, D.L., and Olson, C.E. (1987) Use of Geographic Systems to develop Habitat Suitability Models, Wildl. Soc. Bull. 15, 574–579.

    Google Scholar 

  • Draper, N.R. and Smith, H. (1981) Applied regression analysis, Second Edition, Wiley Series in Probability and Mathematical Statistics, New York.

    MATH  Google Scholar 

  • Egan, J.P. (1975) Signal Detection Theory and ROC analysis, Academic Press. New York.

    Google Scholar 

  • ERENA (1994) Plano de Ordenamento e de Explorav6o Cinegéticos e Plano de Aproveitamento Turistico, TERRAPRIMA - Sociedade Agricola, Lda. Lisboa.

    Google Scholar 

  • Eby, J.R. and Bright, L.R. (1985), A digital GIS based on LANDSAT and other data for elk habitat efectiveness analysis, Proceedings of the 19th International Symposium of Remote Sensing and Environment pp. 855–864.

    Google Scholar 

  • Fabricius, C. and Mentis, M.T. (1990) Seasonal habitat selection by eland in arid savanna in South Africa, S. Afr. J. Zool. 25, 238–244 (cit. in Fabricius e Coetzee 1992 ).

    Google Scholar 

  • Fabricius, C. and Coetzee, K. (1992), Geographic information systems and artificial intelligence for predicting the presence or absence of mountain reedbuck, S.–Afr. Tydskr. Natuurnav 22 (3) 80–86.

    Google Scholar 

  • Gutzwiller, K.J. and Anderson, S.H. (1984), Improving Vertebrate-Habitat Regression Models in Verner, J., Morrison, M., and Ralph, C.J. (eds.), Wildlife 2000. Modeling habitat relationships of terrestrial vertebrates, The University of Wisconsin Press, pp. 161–164.

    Google Scholar 

  • Marzluff, J.M. (1984) Assumptions and design of regression experiments: the importance of lack-of-fit testing, in J. Verner, M. Morrison and C.J. Ralph (eds.), Wildlife 2000. Modeling Habitat Relationships of Terrestrial Vertebrates, The University of Wisconsin Press, pp. 165–170.

    Google Scholar 

  • Maynard, P.F. (1981) The logit classifier: a general maximum likelihood discriminant for remote sensing applications,Unpublished M. A. Thesis, Department of Geography, University of California, Santa Barbara, California (cit. in Pereira 1989).

    Google Scholar 

  • Mladenoff, D. J., Sickley, T.A., Haight, R.G., and Wydeven, A.P. (1995), A regional landscape analysis and prediction of favorable gray wolf habitat in the northern Great Lakes region, Conservation Biology 9 (2), 279–294.

    Article  Google Scholar 

  • Norton, T.W. and Williams, J.E. (1992) Habitat modelling and simulation for nature conservation., Mathematics and Computers in Simulation 33, 379–384.

    Article  Google Scholar 

  • Norton, T.W. and Possingham, H.P. (1993) Wildlife modelling for biodiversity conservartion. Modelling Change in Environmental Systems. John Wiley and Sons.

    Google Scholar 

  • Palmeirim, J.M. (1985), Using LANDSAT TM imagery and spatial modelling in automatic habitat evaluation and release site selection for the Ruffed Grouse (Galliformes: Tetraonidae), Proceedings /9th International Symposium of Remote Sensing and Environment pp. 729–738.

    Google Scholar 

  • Pereira, J.M.C. (1989) A spatial approach to statistical habitat suitability modeling: The Mt. Graham Red Squirrel Case Study, Unpublished Ph. D. Dissertation, School of Renewable Natural Resources, University of Arizona, Tucson, Arizona.

    Google Scholar 

  • Pereira, J.M.C. and Itami, R.M. (1991) GIS-Based habitat modeling using logistic multiple regression: A study of the Mt. Graham red squirrel, Photogrammetric Engineering and Remote Sensing 57(11), 14751486.

    Google Scholar 

  • Pereira, J.M.C. and Duckstein, L. (1993). A multiple criteria decision-making approach to GIS-based land suitability evaluation. Int. J. Geographical Information Systems 5 (7), 407–424.

    Article  Google Scholar 

  • Poole, R.W. (1974) An Introduction to Quantitative Ecology, McGraw-Hill Book Company, New York.

    Google Scholar 

  • Rice, S.M., Guthery, F.S., Spears, G.S., DeMaso, S.J. and Koerth, B.H. (1993) A precipitation-habitat model for northern Bobwhites on semiarid rangeland, J. Wildl. Manage. 57 (1), 92–192.

    Article  Google Scholar 

  • Saveland, J.M. and Neuenschwander, L. F. (1990) A signal detection fremework to evaluate models of tree mortality following fire damage, Forest Science, 36 (1), 66–76.

    Google Scholar 

  • Schamberger, M.L. and O’Neil, L.1. (1984) Concepts and constraints of habitat-model testing, in J. Verner, M. Morrison and C.J. Ralph (eds.), Wildlife 2000. Modeling Habitat Relationship.s of Terrestrial Vertebrates, The University of Wisconsin Press, pp. 5–10.

    Google Scholar 

  • Shugart (Jr.), H.H. (1981) An overview of multivariate methods and their application to studies of wildlife habitat, in D.E. Caper (ed.), The use of multivariate statistics in studies of wildlife habitat. Proceedings of a workshop, Burlington, pp. 4–10.

    Google Scholar 

  • Williams, G.L., Russel, K.R. and Seitz, W.K. (1978) Pattern recognition as a tool in the ecological analysis of habitat, in A. Marwelstein (ed.), Classification, inventory and analysis of fish and wildlife habitat–The Proceedings of a National Symposium, Phoenix, Ariz. U. S. Dep. Inter., Fish and Wildlife Serv., Off. of Biol. Serv., FWS/OBS-78/76 USD, FWS, OBS, Washington, D.C., pp. 521–531.

    Google Scholar 

  • Winterfeldt (von), D. and Edwards, W., (1986), Decision Analysis and Behavioral Research, Cambridge University Press, New York, 604 pp.

    Google Scholar 

  • Zar, J.H. (1996) Biostatistical Analysis, Prentice-Hall, Third edition, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Martins, H., Domingos, T., Rego, F., Borralho, R., Bugalho, J. (1997). Habitat Evaluation Using Logistic Regression. In: Soares, A., Gómez-Hernandez, J., Froidevaux, R. (eds) geoENV I — Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1675-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1675-8_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4861-5

  • Online ISBN: 978-94-017-1675-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics