Skip to main content

Abstract

A numerical finite-difference global ocean tide model with variable grid spacing has been developed. Deep-sea areas are covered by a coarse grid (4-degree meshsize) that is refined in three steps to half-degree mesh-size in most of the shelf areas. The technique of combining coarse and fine grid cells has been generalized. Thus the model is not restricted to a specific arrangement of the numerical grid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accad Y., Pekeris C.L.: 1978, Solution of the tidal equations for the M2 and S2 tides in the world ocean from a knowledge of the tidal potential alone. Phil.Trans.R.Soc.London, Ser.A, 290,pp. 235–266

    Google Scholar 

  • Backhaus J.O.: 1980, Simulation von Bewegungsvorgängen in der Deutschen Bucht. Dt.hydrogr.Z.,Erg.H.B, 15,pp. 1–56

    Google Scholar 

  • Bogdanov K.T., Magarik V.A.: 1967, A numerical solution of the problem of semidiurnal tidal wave distribution (M2 and S2) in the ocean. Dokl.Adad.Nauk. UdSSR, 172, 6 (in Russisch)

    Google Scholar 

  • Brosche P., Sündermann J.: 1971, Die Gezeiten des Meeres und die Rotation der Erde. Pure Appl.Geophys., 86,pp. 95–117

    Article  Google Scholar 

  • Brosche P., Sündermann J.(Eds.): 1978, Tidal friction and the Earth’s rotation. Springer Verlag,Berlin-Heidelberg-New York,242pp

    Google Scholar 

  • Brosche P., Sündermann J.(Eds.): 1982, Tidal friction and the Earth’s rotation II, Springer Verlag,Berlin-Heidelberg-New York,345pp

    Google Scholar 

  • Cartwright D.E.: 1978, Oceanic tides. Int.Hydrogr.Rev. 55,pp. 35–84

    Google Scholar 

  • Cartwright D.E., Zetler B.D., Hamon B.V.: 1979, Pelagic tidal constants. IAPSO Publ.Scien., 30

    Google Scholar 

  • Dishon M., Heezen B.C.: 1968, Digital deep sea sounding library. Int.Hydrogr.Rev., 45,pp. 23–39

    Google Scholar 

  • Doodson A.T.: 1958, Oceanic tides. Adv.Geophys., 5,pp. 117–152

    Article  Google Scholar 

  • Estes R.H.: 1977, A Computer Software System for the generation of global ocean tides and crustal loading effects.Rep.TR-77–41,Bus.and Technol.Systems,Greenbelt,Md.

    Google Scholar 

  • Friedrich, H.: 1966, Numerische Berechnungen der allgemeinen Zirkulation im Meere nach einem Differenzenverfahren, vornehmlich für den Atlantischen Ozean, Mitt.Inst.Meereskd.,Universität Hamburg, 4,pp. 1–55

    Google Scholar 

  • Garrett C.J.R., Munk W.H.: 1971, The age of the tide and the Q of the oceans. Deep-Sea Res., 18,pp. 493–503

    Google Scholar 

  • Gotlib V.Y., Kagan B.A.: 1982a, Numerical simulation of tides in the world ocean. 1. Parameterization of the shelf effects. Dt.Hydrogr.Z., 34, pp. 273–283

    Article  Google Scholar 

  • Gotlib V.Y., Kagan B.A.: 1982b, Numerical simulation of tides in the world ocean. 2. Experiments of the sensitivity of the solution to choice of the shelf effect parameterization and to variations in shelf parameters. Dt.Hydrogr.Z., 35, pp. 1–14

    Article  Google Scholar 

  • Gotlib V.Y., Kagan B.A.: 1982c, Numerical simulation of tides in the world ocean. 3. A solution to the spectral problem. Dt.Hydrogr.Z., 35,pp. 45–58

    Article  Google Scholar 

  • Greenberg D.A.: 1977, Mathematical studies of tidal behaviours in the Bay of Fundy. Mauscr.Rep.Ser.,46,Dept.Fish.Environm.,Ottawa

    Google Scholar 

  • Hendershott M.C.: 1972, The effects of solid Earth deformation on global ocean tides. Geophys.J.R.astr.Soc., 29,pp. 389–402

    Article  Google Scholar 

  • Hendershott M.C.: 1973, Ocean tides, Trans.Am.Geophys.Union, 54,pp. 76–86

    Article  Google Scholar 

  • Hendershott M.C.: 1977, Numerical models of ocean tides. In: Goldberg E.D., McCave I.N., O’Brien J.J., Steele J.H., The sea, Vol.6,Wiley,New York-London-Paris-Toronto

    Google Scholar 

  • Hendershott M.C., Munk W.H.: 1970, Tides. Ann.Rev.Fluid.Mech., 2,pp. 205–224

    Article  Google Scholar 

  • Kjerfve B.: 1981, Tides of the Caribbean Sea.J.Geophys.Rev., 86,pp. 4243–4247

    Article  Google Scholar 

  • Krohn J., Sündermann, J.: 1982, Paleotides before the Permian. In: Brosche P., Sündermann J., Tidal friction and the Earth’s rotation II, pp.. 190–209, Springer Verlag,Berlin-Heidelberg-New York

    Google Scholar 

  • Krohn, J.: 1984, A global M2-ocean tide model with refined resolution on the shelves.Mitt.Inst.Meereskd.Univ.Hamburg,27(in preparation)

    Google Scholar 

  • Kurihara Y., Bender M.A.: 1980, Use of a movable nested-mesh model for tracking a small vortex. Mon.Weath.Rev., 108, pp. 1792–1809

    Article  Google Scholar 

  • Lambeck K.: 1977, Tidal dissipation in the oceans: Astronomical, geophysical and oceanographic consequences. Phil.Trans.R.Soc.London,Ser.A, 287,pp. 545–594

    Article  Google Scholar 

  • Munk W.H., McDonald G.J.F.: 1960, The rotation of the Earth. Cambridge Univ.Press,Cambridge, 296 pp

    Google Scholar 

  • Pariiski N.N., Kusnetzov M.V., Kusnetzova L.V.: 1972, On the effect of oceanic tides on the secular deceleration of the Earth’s rotation. Isv.Acad.Sci.UdSSR,Phys.Solid Earth, 2,pp. 3–12

    Google Scholar 

  • Parke M.E.: 1978, Open ocean tide modelling. Proc.9th GEOP Conf.,Dept.Geod.Sci.Rp.280,Ohio State Univ.

    Google Scholar 

  • Parke, M.: 1982, 01, P1, N2 models of the global ocean tide on an elastic Earth plus surface potential and spherical harmonic decompositions for M2, S2 and K1. Mar.Geod.,6(1),pp.35–81

    Google Scholar 

  • Parke M.E.: Hendershott M.C.: 1980, M2, S2, K1 models of the global tide on an elastic Earth. Mar.Geod., 3,pp. 379–408

    Google Scholar 

  • Pekerís C.L., Accad Y.: 1969, Solution of Laplace’s equation for the M2 tide in the world oceans. Phil.Trans.R.Soc.London,Ser.A, 265,pp. 413–436

    Article  Google Scholar 

  • Schwiderski E.W.: 1978, Global ocean tides, part I: A detailed hydrodynamical interpolation model. Navel Surface Weapons Center,NSWC/DL Tr-3866

    Google Scholar 

  • Schwiderski E.W.: 1978b, Hydrodynamically defind ocean bathymetry, Naval Surface Weapons Center, NSWC/DL TR-3888

    Google Scholar 

  • Schwiderski E.W.: 1980, On charting global ocean tides. Rev.Geophys.Space Phys., 18,pp. 243–268

    Article  Google Scholar 

  • Schwiderski E.W.: 1982, Ocean tidal research and its applications. Unpublished manuscript, Dahlgreen, Virginia

    Google Scholar 

  • Sündermann J.: 1977, The semi-diurnal principal lunar tide M2 in the Bering-Sea. Dt.Hydrogr.Z., 3,pp. 91–101

    Article  Google Scholar 

  • Sundström A., Elvius T.: 1979, Computational problems related to limited-area modelling. In: Numerical methods used in atmospheric models, Vol.II,GARP Publ.Ser., 17,pp. 379–416

    Google Scholar 

  • Trepka L.V.: 1967, Anwendung des hydrodynamisch-numerischen Verfahrens zur Ermittlung des Schelfeinflusses auf die Gezeiten in Modellkanälen und Modellozeanen. Mitt.Inst.Meereskd.Univ.Hamburg, 9,pp. 1–65

    Google Scholar 

  • Zahel W.: 1970, Die Reproduktion gezeitenbedingter Bewegungsvorgänge im Weltozean mittels des hydrodynamisch-numerischen Verfahrens. Mitt.Inst.Meereskd.Univ.Hamburg, I7,pp. 1–50

    Google Scholar 

  • Zahel W.: 1973, The diurnal K1-tide in the world ocean–a numerical investigation. Pure Appl.Geophys., 109,pp. 1819–1825

    Article  Google Scholar 

  • Zahel W.: 1977, A global hydrodynamical-numerical 1°-model of the ocean tides; the oscillation system of the M2-tide and its distribution of energy dissipation. Ann.Geophys., 33,pp. 31–40

    Google Scholar 

  • Zahel W.: 1978, The influence of solid Earth deformation on semidiurnal and diurnal oceanic tides. In: Brosche P., Sündermann J. (Eds.), Tidal friction and the Earth’s rotation. Springer Verlag, Berlin-Heidelberg,New York,pp. 98 - I24

    Chapter  Google Scholar 

  • Zahel W.: 1980, Mathematical modelling of global interaction between ocean tides and Earth tides. Phys.Earth Plan.Inter., 21,pp. 202–217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krohn, J. (1984). A Global Ocean Tide Model with High Resolution in Shelf Areas. In: Seeber, G., Apel, J.R. (eds) Geodetic Features of the Ocean Surface and their Implications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1673-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1673-4_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8405-7

  • Online ISBN: 978-94-017-1673-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics