Advertisement

Fuzzy Relation Equations with Lower and Upper Semicontinuous Triangular Norms

  • Antonio di Nola
  • Salvatore Sessa
  • Witold Pedrycz
  • Elie Sanchez
Chapter
Part of the Theory and Decision Library book series (TDLD, volume 3)

Abstract

In this Ch. we present another generalization of the fuzzy relation equations which have been considered in the previous chapters. Here we focus our attention on a broad class of logical connectives applied in fuzzy set theory, i.e. triangular norms (for short, t-norms) and conorms (for short, s-norms) which in turn enable us to consider max-t and min-s compositions. In Sec.8.1 we present essentially the concept of the logical connectives modelled by t-norms and related s-norms. In Sec.8.2 we analyze max-t fuzzy relation equations and related dual min-s fuzzy relation equations, assuming that t (resp s) is lower (resp. upper) semicontinuous. In Sec.8.3 we pay attention to equations of complex structure and a related adjoint fuzzy relation equation is studied in Sec.8.4. In the last Sec.8.5, max-t fuzzy relation equations under upper semicontinuous t-norms are studied. All the equations considered in this Ch. are assigned on finite referential sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Aczel, Lectures on Functional Equations and Their Applications, Academic Press, New York, 1986.Google Scholar
  2. [2]
    C. Alsina, On convex triangle functions, Aequationes Math. 26 (1983), 191 - 196.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    C. Alsina, On a family of connectives for fuzzy sets, Fuzzy Sets and Systems 16 (1985), 231 - 235.MathSciNetCrossRefGoogle Scholar
  4. [4]
    C. Alsina, On a functional equation characterizing two binary operations on the space of membership functions, Fuzzy Sets and Systems 27 (1988), 5 - 9.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    C. Alsina, E. Trillas and L. Valverde, On some logical connectives for fuzzy set theory, J. Math. Anal. Appl. 93 (1983), 15 - 26.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    R.E. Bellman and M. Giertz, On the analytic formalism of the theory of fuzzy sets, Inform. Sciences 5 (1973), 149 - 156.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    R.E. Bellman and L.A. Zadeh, Local and fuzzy logics, in: Modern Uses of Multiple Valued Logics ( J.M. Dunn and D. Epstein, Eds.), D. Reidel Publ. Co., Dordrecht (1977), pp. 103 - 165.CrossRefGoogle Scholar
  8. [8]
    L. Bour and M. Lamotte, Solutions minimales d'equations de relations floues avec la composition max-norme triangulaire, BUSEFAL 31 (1987), 24 - 31.zbMATHGoogle Scholar
  9. [9]
    L. Bour and M. Lamotte, Equations de relations floues avec la composition conormnorm triangulaires, BUSEFAL 34 (1988), 86 - 94.zbMATHGoogle Scholar
  10. [10]
    L. Bour, G. Hirsch and M. Lamotte, Determination d'un operateur de maximalization pour la resolution d'equations de relation floue, BUSEFAL 25 (1986), 95 - 106.Google Scholar
  11. [11]
    W.F. Darsow and M.J. Frank, Associative functions and Abel-Schröder systems, Publ. Math. Debrecen 30 (1983), 253 - 272.MathSciNetzbMATHGoogle Scholar
  12. [12]
    A. Di Nola, W. Pedrycz and S. Sessa, Fuzzy relation equations under LSC and USC T-norms and its Boolean solutions, Stochastica,to appear.Google Scholar
  13. [13]
    D. Dubois and H. Prade, A class of fuzzy measures based on triangular norms, Internat. J. Gen. Systems 8 (1982), 43 - 61.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    D. Dubois and H. Prade, A theorem on implication functions defined from triangular norms, Stochastica 8, no. 3 (1984), 267 - 279.MathSciNetzbMATHGoogle Scholar
  15. [15]
    D. Dubois and H. Prade, Fuzzy-set-theoretic differences and inclusions and their use in the analysis of fuzzy equations, Control and Cybern. 13 (1984), 129 - 146.MathSciNetzbMATHGoogle Scholar
  16. [16]
    D. Dubois and H. Prade, A review of fuzzy set aggregation connectives, Inform. Sciences 36 (1985), 85 - 121.MathSciNetzbMATHGoogle Scholar
  17. [17]
    H. Dyckhoff and W. Pedrycz, Generalized means as model of compensative connectives, Fuzzy Sets and Systems 14 (1984), 145 - 154.MathSciNetCrossRefGoogle Scholar
  18. [18]
    M.J Frank, On the simultaneous associativity of F(x,y) and x+y-F(x,y), Aequationes Math. 19 (1979), 194 - 226.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963.zbMATHGoogle Scholar
  20. [20]
    R. Goetschel and W. Voxman, A note on characterization of the max and min operators, Inform. Sciences 30 (1983), 5 - 10.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    S. Gottwald, Generalization of some results of E. Sanchez, BUSEFAL 16 (1983), 54 - 60.zbMATHGoogle Scholar
  22. [22]
    S. Gottwald, Characterization of the solvability of fuzzy equations, Elektron. Inf. verarb. Kybern. 22 (1986), n. 2/3, 67 - 91.MathSciNetzbMATHGoogle Scholar
  23. [23]
    S. Gottwald, Fuzzy set theory with T-norms and (p-operators, in Topics in the Mathematics of Fuzzy Systems ( A. Di Nola and A. Ventre, Eds.), Verlag TÜV Rheinland, Köln (1986), pp. 143 - 196.Google Scholar
  24. [24]
    H. Hamacher, Über logische Vernüpfungen unscharfer Aussagen and deren Zugehörige Bewertungs-funktionen, in: Progress in Cybernetics and Systems Research, Vol.II, ( R. Trappl and F. de P. Hanika, Eds.), Hemisphere Publ. Corp., New York (1975), pp. 276 - 287.Google Scholar
  25. [25]
    E.P. Klement, Construction of fuzzy r-algebras using triangular norms, J. Math. Anal. Appl. 85 (1982), 543 - 565.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    K. Menger, Statistical metric spaces, Proc. Nat. Acad. Sci. USA 28 (1942), 535 - 5 37.MathSciNetCrossRefGoogle Scholar
  27. [27]
    M. Miyakoshi and M. Shimbo, Solutions of composite fuzzy relational equations with triangular norms, Fuzzy Sets and Systems 16 (1985), 53 - 63.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    M. Mizumoto, T-norms and their pictorial representations BUSEFAL 25 (1986), 6778.Google Scholar
  29. [29]
    W. Pedrycz, Fuzzy relational equations with triangular norms and their resolution, BUSEFAL 11 (1982), 24 - 32.zbMATHGoogle Scholar
  30. [30]
    W. Pedrycz, Some aspects of fuzzy decision-making, Kybernetes 11 (1982), 297301.Google Scholar
  31. [31]
    W. Pedrycz, Fuzzy relational equations with generalized connectives and their applications, Fuzzy Sets and Systems 10 (1983), 185 - 201.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    W. Pedrycz, Numerical and applicational aspects of fuzzy relational equations, Fuzzy Sets and Systems 11 (1983), 1 - 18.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    W. Pedrycz, Some applicational aspects of fuzzy relational equations in system analysis, Internat. J. Gen. Systems 9 (1983), 125 - 132.zbMATHCrossRefGoogle Scholar
  34. [34]
    W. Pedrycz, On generalized fuzzy relational equations and their applications, J. Math. Anal. Appl. 107 (1985), 520 - 536.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    W. Rodder, On "and" and "or" connectives in fuzzy set theory, RWTH Aachen, 75/07, 1975.Google Scholar
  36. [36]
    B. Schweizer and A.Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313334.Google Scholar
  37. [37]
    B. Schweizer and A.Sklar, Associative functions and statistical triangle inequalities, Publ. Math. Debrecen 8 (1961), 169 - 186.MathSciNetzbMATHGoogle Scholar
  38. [38]
    B. Schweizer and A.Sklar, A.sociative functions and abstract semigroups, Publ. Math. Debrecen 10 (1963), 69 - 81.Google Scholar
  39. [39]
    B. Schweizer and A.Sklar, Probabilistic Metric Spaces, North-Holland, N.Y., 1983.Google Scholar
  40. [40]
    H. Sherwood, Characterizing dominates on a family of triangular norms, Aequationes Math. 27 (1984), 255 - 273.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    M. Sugeno, Fuzzy measures and fuzzy integrals: a survey, in: Fuzzy Automata and Decision Processes ( M.M. Gupta, G.N. Saridis and B.R. Gaines, Eds.), North-Holland, Amsterdam (1977), pp. 89 - 102.Google Scholar
  42. [42]
    M. Tardiff, On a generalized Minkowsky inequality and its relation to dominates for t-norms, Aequationes Math. 27 (1984), 308 - 316.MathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    U. Thole, H.J. Zimmermann and P. Zysno, On the suitability of minimum and product operators for intersection of fuzzy sets, Fuzzy Sets and Systems 2 (1979), 167 - 180.zbMATHCrossRefGoogle Scholar
  44. [44]
    R.R. Yager, On a general class of fuzzy connectives, Fuzzy Sets and Systems 4 (1980), 235 - 242.MathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    R.R. Yager, Measures of fuzziness based on T-norms, Stochastica 3 (1982), 207229.Google Scholar
  46. [46]
    R.R. Yager, Some procedures for selecting fuzzy set-theoretic operators, Internat. J. Gen. Systems 8 (1982), 115 - 124.MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    Y.D. Yu, Triangular norms and TNF-sigma algebras, Fuzzy Sets and Systems 16 (1985), 251 - 264.MathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    L. Valverde, On the structure of F-indistinguishability operators, Fuzzy Sets and Systems 17 (1985), 313 - 328.MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    S. Weber, A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms, Fuzzy Sets and Systems 11 (1983), 115 - 134.MathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    H.J. Zimmermann and P. Zysno, Latent connectives in human decision-making, Fuzzy Sets and Systems 4 (1980), 37 - 51.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1989

Authors and Affiliations

  • Antonio di Nola
    • 1
  • Salvatore Sessa
    • 1
  • Witold Pedrycz
    • 2
  • Elie Sanchez
    • 3
  1. 1.Facoltà di ArchitetturaUniversità di NapoliNapoliItaly
  2. 2.Department of Electrical EngineeringWinnipegCanada
  3. 3.Faculté de MédecineUniversité Aix-Marseille IIMarseilleFrance

Personalised recommendations