Advertisement

Introductory Remarks on Fuzzy Sets

  • Antonio di Nola
  • Salvatore Sessa
  • Witold Pedrycz
  • Elie Sanchez
Chapter
Part of the Theory and Decision Library book series (TDLD, volume 3)

Abstract

This Ch. can be regarded as an introduction to this book that originates from the primordial need to collect results from several papers on fuzzy relation equations. First of all we would like to emphasize some considerations of a general character in fuzzy set theory. This will enable the reader to get a certain perspective on this field of research. Moreover these remarks could suggest a philosophy behind the methodology of fuzzy sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.E. Bellmann, R. Kalaba and L.A. Zadeh, Abstraction and pattern classification, J. Math. Anal. Appl. 13 (1966), 1 - 7.MathSciNetCrossRefGoogle Scholar
  2. [2]
    R.E. Bellmann and L.A. Zadeh, Decision-making in a fuzzy environment, Management Sciences 17 (1970), 141 - 164.CrossRefGoogle Scholar
  3. [3]
    M. Black, Vagueness: an exercise in logical analysis, Philosophy Science 4 (1937), 427 - 455.CrossRefGoogle Scholar
  4. [4]
    E. Borel, Probabilité et Certitude, Press Univ. de France, Paris, 1950.Google Scholar
  5. [5]
    C.Corge, Elements d'Informatique, Larousse, Paris, 1975.Google Scholar
  6. [6]
    R.C. Godal and T.J. Goodman, Fuzzy Sets and Borel, IEEE Trans. Syst. Man. Cybern., vol. SMC-10, no. 10 (1980), 637.MathSciNetGoogle Scholar
  7. [7]
    B. Russell, Vagueness, Austral. J. Philosophy 1 (1923), 84 - 92.Google Scholar
  8. [8]
    L.A. Zadeh, Fuzzy Sets, Inform. and Control 8 (1965), 338 - 353.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst. Man. Cybern., vol. SMC-2 (1973), 28 - 44.Google Scholar
  10. [10]
    L.A. Zadeh, Coping with the imprecision of the real world: an interview with L.A. Zadeh, Communications of the ACM 27, no. 4 (1984), 304 - 311.MathSciNetCrossRefGoogle Scholar
  11. J. De Kerf, A Bibliography on Fuzzy Sets, J. Comp. Applied Math. 1 (1975), 205 - 212.zbMATHCrossRefGoogle Scholar
  12. B.R. Gaines and L.J. Kohout, The Fuzzy Decade: a Bibliography on Fuzzy Systems and Closely Related Topics, Internat. J. Man Machine Studies 9 (1977), 1 - 68.zbMATHCrossRefGoogle Scholar
  13. A.Kandel, Bibliography: A Compilation of Approximately 1000 Important References (Fuzzy 1000) on Fuzzy Set Theory and Its Applications, in: Fuzzy Mathematical Techniques with Applications, Addison-Wesley Publ. Co., Reading, Mass. (1986), pp. 225 - 266.Google Scholar
  14. A.Kandel and W.J. Byatt, Fuzzy sets, Fuzzy Algebra and Fuzzy Statistics, Proceedings of the IEEE, vol. 66, n. 12 (1978), 1619 - 1639.CrossRefGoogle Scholar
  15. A. Kandel and R.R. Yager, A 1979 Bibliography of Fuzzy Sets and Their Applications, in: Advances in Fuzzy Set Theory and Application ( M.M. Gupta, R.K. Ragade and R.R. Yager, Eds.), North-Holland, Amsterdam (1979), pp. 621 - 744.Google Scholar
  16. J.Maiers and Y.S. Sherif, Application of Fuzzy Set Theory, IEEE Trans. Syst. Man. Cybern., vol. SMC-15, no. 1 (1985), 175 - 189.Google Scholar
  17. R.R. Yager, An Useful Bibliography for Fuzzy Sets, in: Recent Advances in Fuzzy Set and Possibility Theory ( R.R.Yager, Ed.), Pergamon Press, Elmsford, N.Y., 1982.Google Scholar
  18. R.R. Yager, Fuzzy Sets: A Bibliography, Intersystems Publications, Seaside, CA, 1983.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1989

Authors and Affiliations

  • Antonio di Nola
    • 1
  • Salvatore Sessa
    • 1
  • Witold Pedrycz
    • 2
  • Elie Sanchez
    • 3
  1. 1.Facoltà di ArchitetturaUniversità di NapoliNapoliItaly
  2. 2.Department of Electrical EngineeringWinnipegCanada
  3. 3.Faculté de MédecineUniversité Aix-Marseille IIMarseilleFrance

Personalised recommendations