Skip to main content

Pre-Formed Carriers for Cell Immobilisation

  • Chapter

Part of the book series: Focus on Biotechnology ((FOBI,volume 8A))

Abstract

Cell immobilisation in pre-formed carriers involves passive/natural immobilisation usually in situ in the bioreactors or in the culture environment. Numerous inorganic and organic materials have been used as pre-formed carriers: reticulated polyurethane and polyvinyl formal foam, other polymers, plastics, stainless steel, ceramic, glass, synthetic (ion exchange) resins, activated charcoal, aluminium oxide, diatomaceous earth, sand, cellulose, lignocellulose, cellulose acetate, and others. In this chapter however, only polyurethane foam, stainless steel knitted mesh, ceramic, glass and cellulose will be considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, B.; Black, G.; Lewis, P. and Pinches, A. (1979) Biological particles of given size, shape and density for use in biological reactors. Biotechnol. Bioeng. 21: 193–200.

    Google Scholar 

  2. Cooper, P.F.; Walker, 1.; Crabtree, H.E. and Aldred, R.P. (1986) Evaluation of the CAPTOR@ process for uprating an overloaded sewage works. In: Webb, C.; Black, G.M. and Atkinson, B. (Eds.), Process Engineering Aspects of Immobilised Cell Systems, The Institution of Chemical Engineers, Rugby, UK, ISBN 0 85295 196 5, pp. 205–217.

    Google Scholar 

  3. Gotta, P.S.; Reddy, M.P.; Simms, M.K. and Laken, T.J. (1994) Three years of full-scale Captor@ process operating at Moundsville WWTP, Water Sci. Technol. 29: 175–181.

    Google Scholar 

  4. http://www.linde-anlagenbau.de/en

  5. http://www.kaldnes.com

  6. Dunne, W.M. (2002) Bacterial adhesion: seen any good biofilms lately? Clinical Microbiol. Rev. 15: 155166.

    Google Scholar 

  7. O’Toole, G.; Kaplan, H.B. and Koller, R.. (2000) Biofilm formation as microbial development. Annu. Rev. Microbiol. 54: 49–79.

    Google Scholar 

  8. Sauer, K. and Camper, A.K. (2001) Characterization of phenotypic changes in P. putida in response to surface-associated growth. J. Bacteriol. 183: 6579–6589.

    Article  CAS  Google Scholar 

  9. Wen, Z.T. and Bume, R.A. (2002) Functional genomics approach to identifying genes required for biofilm development by S. mutans, Appl. Env. Microbiol. 68: 1196–1203.

    Google Scholar 

  10. Ebert, L.; Molin, S. and Givskov, M. (1999) Surface motility of S. liquefaciens MG1. J. Bacteriol. 181: 1703–1712.

    Google Scholar 

  11. Loo, C.Y.; Corliss, D.A. and Ganeshkumar, N. (2000) S. gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J. Bacteriol. 182: 1374–1382.

    Google Scholar 

  12. Shapiro, J.A. and Dworkin, M. (Eds.) (1997) Bacteria as Multicellular Organisms. Oxford Univ. Press, New York, USA.

    Google Scholar 

  13. Williams, P.D. and Mavituna, F. (1992) Immobilised plant cells. In: Plant biotechnology, Comprehensive biotechnology, second supplement, Fowler, M.W. and Warren, G.S. (Eds.), Moo-Young, M. (Ed-inChief), Pergamon Press, Oxford, UK, pp. 63–78.

    Google Scholar 

  14. Liu, D. and Dixit, V. (Eds.) (1997) Porous materials for tissue engineering. Materials Sci. Forum, Vol. 250, TTP, Switzerland.

    Google Scholar 

  15. Chapekar, M.S. (2000) Tissue engineering: challenges and opportunities. J. Biomed. Mater. Res. ( Appl. Biomater. ) 53: 617–620.

    Google Scholar 

  16. Mavituna, F.; Park, J.M.; Williams, P.D. and Wilkinson, A.K. (1987) Characteristics of immobilised plant cell reactors. In: Plant and Animal Cells: Process Possibilities, Webb, C. and Mavituna, F. (Eds.), Ellis Horwood Ltd, Chichester, UK. ISBN 0 7458 0145 5, pp. 92–115.

    Google Scholar 

  17. Nemati, M. and Webb, C. (1999) Combined biological and chemical oxidation of ferrous sulfate using immobilised Thiobacillus ferrooxidans. J. Chem. Technol. Biotechnol. 74: 562–570.

    Google Scholar 

  18. Armstrong, J.L.; Mavituna, F. and Stephens, G.M. (1997) Novel immobilisation supports for anaerobic bacteria. The 1997 Jubilee Research Event, Vol. 2, IChemE, Rugby. UK, ISBN 0 85295 389 5, pp. 969972.

    Google Scholar 

  19. Bekers, M.; Ventina, E.; Karsakevich, A.; Vina, I.; Rapoport, A.; Upite, D.; Kaminska, E. and Linde, R. (1999) Attachment of yeast to modified stainless steel wire spheres, growth of cells and ethanol production. Process Biochem. 35: 523–530.

    Article  Google Scholar 

  20. Grampp, G.E.; Applegate, M.A. and Stephanopoulos, G. (1996) Cyclic operation of ceramic-matrix animal cell bioreactors for controlled secretion of an endocrine hormone. A comparison of single-pass and recycle modes of operation. Biotechnol Prog. 12: 837–846.

    Google Scholar 

  21. Simoni, S.F.; Schäfer, A.; Harms, H. and Zehnder, A.J.B. (2001) Factors affecting mass transfer limited biodegradation in saturated porous media. J. Contam. Hydrol. 50: 99–120.

    Google Scholar 

  22. Jerabkova, H.; Kralova, B. and Nahlik, J. (1999) Biofilm of Pseudomonas C12B on glass support as catalytic agent for continuous SDS removal. Intern. Biodeterior. Biodegrad. 44: 233–241.

    Google Scholar 

  23. Ileri, R. and Mavituna, F. (1998) A theoretical study of biosorption by immobilized dead biomass in a batch sheet bioreactor. Trans. IChemE 76 (B3): 249–258.

    CAS  Google Scholar 

  24. Park, J.M. and Mavituna, F. (1986) Factors affecting the immobilisation of plant cells in biomass support particles. In: Process Engineering Aspects of Immobilised Cell Systems, Webb, C.; Black, G.M. and Atkinson, B. (Eds.), Pergamon Press, Oxford, pp. 295–303.

    Google Scholar 

  25. Williams, P D, Wilkinson, A K, Lewis, J A, Black, G M and Mavituna, F (1988) A method for the rapid production of fine plant cell suspension cultures, Plant Cell Reports, 7, 459–462.

    Google Scholar 

  26. Wirpsza, Z. (1993) Polyurethanes: chemistry, technology and applications. Ellis Horwood, Chichester, UK.

    Google Scholar 

  27. Bang, S S.; Galinat, J.K. and Ramakrishnan, V. (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb. Technol. 28: 404–409.

    Google Scholar 

  28. Kishimoto, M.; Beluso, M.; Omasa, T.; Katakura, Y.; Fukuda, H. and Suga, K. (2002) Construction of a fuzzy control system for a bioreactor using biomass support particles. J. Mol. Catalysis (B: Enzymatic ) 17: 207–213.

    Google Scholar 

  29. Liu, Y.; Kondo, A.; Ohkawa, H.; Shiota, N. and Fukuda, H. (1998) Bioconversion using immobilized recombinant flocculent yeast cells carrying a fused enzyme gene in an ‘intelligent’ bioreactor. Biochem. Eng. J. 2: 229–235.

    Google Scholar 

  30. Furuta, H.; Arai, T.; Hama, H.; Shiomi, N.; Kondo, A. and Fukuda, H. (1997) Production of glucoamylase by passively immobilised cells of a flocculant yeast Saccharomyces diastaticus. J. Ferment. Bioeng. 84: 169–171.

    Google Scholar 

  31. Rostron, W.M.; Stuckey, D.C. and Young, A.A. (2001) Nitrification of high strength ammonia wastewaters: comparative study of immobilisation media. Water Res. 35: 1169–1178.

    Article  CAS  Google Scholar 

  32. Manohar, S.; Kim, C.K. and Karegoudar, T.B. (2001) Enchanted degradation of naphthalene by immobilisation of Pseudomonas sp. strain NGK1 in polyurethane foam. Appl. Microbiol. Biotechnol. 55: 311–316.

    Google Scholar 

  33. Vassilev, N.; Vassileva, M.; Fenice, M. and Federici, F. (2001) Immobilised cell technology applied in solubilisation of insoluble inorganic (rock) phosphates and P plant acquisition. Bioresource Technol. 79: 263–271.

    Article  CAS  Google Scholar 

  34. Bertin, L.; Majone, M.; Gioia, D.D. and Fava, F. (2001) An aerobic fixed-phase biofilm reactor system for the degradation of the low-molecular weight aromatic compounds occurring in the effluents of anaerobic digestors treating olive mill wastewaters. J. Biotechnol. 87: 161–177.

    Article  CAS  Google Scholar 

  35. Ban, K.; Kaieda, M.; Matsumoto, T.; Kondo, A. and Fukuda, H. (2001) Whole cell biocatalyst for biodiesel fuel production utilising Rhizopus oryzae cells immobilised within biomass support particles. Biochem. Eng. J. 8: 39–43.

    Google Scholar 

  36. Tang, C.W.; Zalat, E. and Mavituna, F. (2001) Initiation, growth and immobilisation of cell cultures of Taxus spp. for paclitaxel production. In: Focus in Biotechnology: Engineering and Manufacturing for Biotechnology, Hofman, M. and Thonart, P. (Eds.), Volume IV, Anne, J. and Hofman M, (Ser. Eds.), Kluwer Publishers, Dordrecht, The Netherlands, pp. 429–448.

    Google Scholar 

  37. Tang, C.W. and Mavituna, F. (2001) Cell immobilisation of Taxus media. In: Novel Frontiers in the Production of Compounds for Biomedical Use, Van Broekhoven, A.; Shapiro, F. and Anne, J. (Vol. Eds.) Volume 1, Part 6: Antitumor Compounds, Anne, J. and Hofinan M. (Ser. Eds.), Kluwer Publishers, Dordrecht, The Netherlands, pp. 401–407.

    Google Scholar 

  38. Yamaji, H.; Tagai, S.I.; Sakai, K.; Izumoto, E. and Fukuda, H. (2000) Production of recombinant protein by Baculovirus-infected insect cells in immobilised culture using porous biomass support particles. J. Bioscience Bioeng. 89: 12–17.

    Article  CAS  Google Scholar 

  39. Jianlong, W. (2000) Production of citric acid by immobilized Aspergillus niger using a rotating biological contactor ( RBC ). Bioresource Technol. 75: 245–247.

    Google Scholar 

  40. Kapoor, M.; Beg, Q.K.; Bhushan, B.; Dadhich, K. S. and. Hoondal, G. S (2000) Production and partial purification and characterization of a thermo-alkali stable polygalacturonase from Bacillus sp. MG-cp-2. Process Biochem. 36: 467–473.

    CAS  Google Scholar 

  41. Elibol, M. and Özer, D. (2000) Lipase production by immobilised Rhizopus arrhizus. Process Biochem. 36: 219–223.

    Article  CAS  Google Scholar 

  42. Kurosawa, H.; Yasumoto, K.; Kimura, T. and Amano, Y. (2000) Polyurethane membrane as an efficient immobilisation carrier for high-density culture of rat hepatocytes in the fixed-bed reactor. Biotechnol. Bioeng. 70: 160–166.

    Google Scholar 

  43. Beg, Q.K.; Bhushan, B.; Kapoor, M. and Hoondal, G.S. (2000) Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11–3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb. Technol. 27: 459–466.

    Google Scholar 

  44. Liu, C.; Moon, K.; Honda, H. and Kobayashi, T. (2000) Immobilization of rice (Oryza sativa L.) callus in polyurethane foam using a turbine blade reactor. Biochem. Eng. J. 4: 169–175.

    Google Scholar 

  45. Moon, K.H.; Honda, H. and Kobayashi, T. (1999) Development of a bioreactor suitable for embryogenic rice callus culture. J. Bioscience Bioeng. 87: 661–665.

    Article  CAS  Google Scholar 

  46. Yamaguchi, T.; lshida, M. and Suzuki, T. (1999) An immobilized cell system in polyurethane foam for the lipophilic micro-alga Prototheca zopfii. Process Biochem. 34: 167–172.

    Article  CAS  Google Scholar 

  47. Ileri, R. and Mavituna, F. (1998) A theoretical study of biosorption by immobilized dead biomass in a batch sheet bioreactor. Trans. IChemE, 76 (B3), 249–258.

    CAS  Google Scholar 

  48. Ileri, R.; Mavituna, F.; Parkinson, M. and Turker, M. (1990) The use of biosorption for the uptake of low level contaminants by immobilised cells. Proc. 5th European Congress on Biotechnology, Christiansen, C.; Munck, L. and Villadsen, J. (Eds.), Munksgaard International Publisher, Copenhagen, Vol. IT pp. 663–666.

    Google Scholar 

  49. Canovas, M.; Garcia-Cases, L. and Iborra, J.L. (1998) Limonin consumption at acidic pH values and absence of aeration by Rhodococcus fascians cells in batch and immobilized continuous systems. Enzyme Microb. Technol. 22: 111–116.

    Google Scholar 

  50. Fenice, M.; Di Giambattista, R.; Raetz, E.; Leuba, J.L. and Federici, F. (1998) Repeated-batch and continuous production of chitinolytic enzymes by Penicillium janrhinellum immobilised on chemically-modified macroporous cellulose. J. Biotechnol. 62: 119–131.

    Article  CAS  Google Scholar 

  51. Tamer, I.M. and Mavituna, F. (1997) Protease from freely suspended and immobilised Mirabilis jalapa. Process Biochem. 32: 195–200.

    Article  CAS  Google Scholar 

  52. Obôn, J.S.; Maiquez, J.R.; Canovas, M.; Kleber, H.P. and Iborra, J.L. (1997) L(-)-Carnitine production with immobilized Escherichia coil cells in continuous reactors. Enzyme Microb. Technol. 21: 531–536.

    Google Scholar 

  53. Gerin, P.A.; Asther, M. and Rouxhet, P.G. (1997) Peroxidase production by the filamentous fungus Phanerochaete chrysosporium in relation to immobilization in “filtering” carriers. Enzyme Microb. Technol. 20: 294–300.

    Google Scholar 

  54. Vassilev, N.; Vassileva, M. and Azcon, R. (1997) Solubilization of rock phosphate by immobilized Aspergillus niger. Bioresource Technol. 59 (1), 1–4.

    Article  CAS  Google Scholar 

  55. Nemati, M. and Webb, C. (1996) Effect of ferrous iron concentration on the catalytic activity of immobilised cells of Thiobacillus ferooxidans. Appl. Microbiol. Biotechnol. 46: 250–255.

    Google Scholar 

  56. Jensen, A.B. and Webb, C. (1994) A trickle bed reactor for ferrous sulphate oxidation using Thiobacillus ferroxidans. Biotechnol. Techn. 8: 87–92.

    Google Scholar 

  57. Zaiat, M.; Cabral, A.K.A. and Foresti, E. (1996) Cell wash-out and external mass transfer resistance in horizontal-flow anaerobic immobilized sludge reactor. Water Res. 30: 2435–2439.

    Article  CAS  Google Scholar 

  58. Travieso, L.; Benitez, F.; Weiland, P.; Sanchez, E.; Dupeyrón, A. and Dominguez, A.R. (1996) Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresource Technol. 55: 181–186.

    Article  CAS  Google Scholar 

  59. Fava, F.; Baldoni, F.; Marchetti, L. and Quattroni, G. (1996) A bioreactor system for the mineralization of low-chlorinated biphenyls. Process Biochem. 31: 659–667.

    Article  CAS  Google Scholar 

  60. Zong, D.H. and Ying, J.Y. (1995) Fuzzy growth kinetics of immobilized C. roseus cells in polyurethane foams. Chem. Eng. Sci. 50: 3297–3301.

    Google Scholar 

  61. Urrutia, I.; Serra, J.L. and Llama, M.J. (1995) Nitrate removal from water by Scenedesmus obliques immobilized in polymeric foams. Enzyme Microb. Technol. 17: 200–205.

    Google Scholar 

  62. Roig, M.G.; Manzano, T.; Diaz, M.; Pascual, M.J.; Paterson, M. and Kennedy, J.F. (1995) Enzymicallyenhanced extraction of uranium from biologically leached solutions. Int. Biodeterior. Biodegrad. 35: 93127.

    Google Scholar 

  63. Ozergin-Ulgen, K. and Mavituna, F. (1994) Production of actinorhodin by immobilised and freely suspended Streptomyces coelicolor. Progr. Biotechnol. 9: 497–500.

    Google Scholar 

  64. Ozergin-Ulgen, K. and Mavituna, F. (1994) Comparison of the activity of immobilised and freely suspended Streptomyces coelicolor A3(2). Appl. Microbiol. Biotechnol. 41: 197–202.

    Google Scholar 

  65. Yamaji, H. and Fukuda, H. (1994) Growth kinetics of animal cells immobilised within porous support paticles in a perfusion culture. Appl. Microbiol. Biotechnol. 42: 531–535.

    Google Scholar 

  66. Yamaji, H. and Fukuda, H. (1992) Growth and death behaviour of anchorage-independent animal cells immobilised within porous support matrices. Appl. Microbiol. Biotechnol. 37: 244–251.

    Google Scholar 

  67. Yamaji, H.; Fukuda, H.; Nojima, Y. and Webb, C. (1989) immobilisation of anchorage-independent animal cells using reticulated polyvinyl formal resin biomass support particles. Appl. Microbiol. Biotechnol. 30: 609–613.

    Google Scholar 

  68. Bon, E. and Webb, C. (1989) Passive immobilisation of Aspergillus awamori spores for subsequent glucoamylase production. Enzyme Microb. Technol. 11: 495–499.

    Google Scholar 

  69. Wilkinson, A.K.; Park, J.M.; Williams, P.D. and Mavituna, F. (1990) Immobilisation of plant cells and bioreactor design. Proc. APBioChE ‘80, Korea, pp. 173–176.

    Google Scholar 

  70. Mavituna, F. and Park, M. (1985) Growth of immobilised plant cells in reticulate polyurethane foam matrices. Biotechol. Lett. 7: 637–640.

    Google Scholar 

  71. Mavituna, F.; Williams, P D; Wilkinson, A.K. and Park, J.M. (1987) Bioreactor performance for the production of secondary metabolites by immobilised plant cells. Proc. of the 4th European Congress on Biotechnology, Amsterdam, June 14–20, 2, pp. 385–387.

    Google Scholar 

  72. Turker, M. and Mavituna, F. (1987) Production of cellulase by freely suspended and immobilised cells of Trichoderma reesei. Enzyme Microb. Technol. 9: 739–743.

    Google Scholar 

  73. Bekers, M.; Laukevics, J.; Karsakevich, A.; Ventina, E.; Kaminska, E.; Upite, D.; Vina, 1.; Linde, R. and Scherbaka, R. (2001) Levan-ethanol biosynthesis using Zymomonas mobilis cells immobilized by attachment and entrapment. Process Biochem. 36: 979–986.

    CAS  Google Scholar 

  74. Bekers, M.; Ventina, E.; Laukevics, J.; Kaminska, E.; Upite, D. and Vigants, A. (1997) Levan production by Zymomonas mobilis cells attached to plaited spheres. Acta biotechnol, 17: 265–275.

    Article  CAS  Google Scholar 

  75. Gomez, J.M.; Cantero, D. and Webb C. (2000) Immobilisation of Thiobacillus ferrooxidans cells on nickel alloy fibre for ferrous sulfate oxidation. Appl. Microbiol. Biotechnol. 54: 335–340.

    Google Scholar 

  76. Cross, P.A. and Mavituna, F. (1987) Yeast retention fermenters for beer production Proc. of the 4th European Congress on Biotechnology, Amsterdam, June 14–20 Vol. 1, pp. 199–200.

    Google Scholar 

  77. Yongming, Z.; Liping, H.; Jianlong, W.; Juntang, Y.; Hanchang, S. and Yi, Q. (2002) An internal airlift loop bioreactor with Burkholderia pickttii immobilized onto ceramic honeycomb support for degradation of quinoline. Biochem. Eng. J. 11: 149–157.

    Google Scholar 

  78. Prieto, M.B.; Hidalgo, A.; Serra, J.L. and Llama, M.J. (2002) Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite0 in a packed-bed reactor. J. Biotechnol. 97: 1–11.

    Article  CAS  Google Scholar 

  79. Resende, M.M.; Ratusznei, S.M.; Suazo, C.A.T. and Giordano, R.C. (2002) Simulating a ceramic membrane bioreactor for the production of penicillin: an example of the importance of consistent initialization for solving DAE systems. Process Biochem. 37: 1297–1305.

    Article  CAS  Google Scholar 

  80. Martin, M.; Mengs, G.; Plaza, E.; Garbi, C.; Sanchez, M.; Gibello, A.; Gutierrez, F. and Ferrer, E. (2000) Propachlor removal by Pseudomonas strain GCHI in an immobilised-cell system. Appl. Environ. Microbiol. 66: 1190–1194.

    Google Scholar 

  81. Christov, P.; Spassov, G. and Pramatarova, V. (1999) Effect of matrix on (S)-p-chlorodiphenylmethanol production by immobilized Debaryomyces mamma. Process Biochem. 34: 231–237.

    Article  CAS  Google Scholar 

  82. Ohashi, R.; Kamoshita, Y.; Kishimoto, M. and Suzuki, T. (1998) Continuous production and separation of ethanol without effluence of wastewater using a distiller integrated scm-reactor system. J. Ferment. Bioeng. 86: 220–225.

    Google Scholar 

  83. Martin-Montalvo, D.; Mengs, G.; Ferrer, E.; Allende, J.L.; Alonso, R. and Martin, M. (1997) Simazine degradation by immobilized and suspended soil bacterium. Int. Biodeterior. Biodegredat. 40: 93–99.

    Google Scholar 

  84. Salter, G.J.; Kell, D.B.; Ash, L.A.; Adams, J.M.; Brown, A.J. and James, R. (1990) Hydrodynamic deposotion: a novel method of cell immobilisation. Enzyme Microbial. Technol. 12: 419–430.

    Google Scholar 

  85. Bodeker, B.G.; Hubner, G.E.; Hewlett, G. and Schlumberger, H.D. (1987) Production of human monoclonal antibodies from immobilised cells in the Opticell culture system. Dev. Biol. Stand. 66: 473479.

    Google Scholar 

  86. Barbucci, R.; Magnani, A.; Lamponi, S.; Pasqui, D. and Bryan, S. (2003) The use of hyaluronan and its sulphated derivative patterned with micrometric scale on glass substrate in melanocyte cell behaviour. Biomaterials 24: 915–926.

    Article  CAS  Google Scholar 

  87. Barbucci, R.; Lamponi, S.; Magnani, A. and Pasqui, D. (2002) Micropatterned surfaces for the control of endothelial cell behaviour. Biomol. Eng. 19: 161–170.

    Google Scholar 

  88. Kuncova, G.; Triska, J.; Vrchotova, N. and Podrazky, O. (2002) The influence of immobilization of Pseudomonas sp. 2 on optical detection of polychlorinated biphenyls. Mat. Sci. Eng. (C) 21: 195–201.

    Google Scholar 

  89. Cornish, T.; Branch, D.W.; Wheeler, B.C. and Campanelli, J.T. (2002) Microcontact printing: a versatile technique for the study of synaptogenic molecules. Molec. Cell. Neurosci. 20: 140–153.

    Google Scholar 

  90. Kam, L.; Shain, W.; Turner, J.N. and Bizios, R. (2002) Selective adhesion of astrocytes to surfaces modified with immobilized peptides. Biomaterials 23: 511–515.

    Article  CAS  Google Scholar 

  91. Premkumar, J.R.; Lev, O.; Marks, R.S.; Polyak, B.; Rosen, R. and Belkin, S. (2001) Antibody-based immobilization of bioluminescent bacterial sensor cells. Talanta 55: 1029–1038.

    Article  CAS  Google Scholar 

  92. Bonin, P.; Rontani, J.F. and Bordenave, L. (2001) Metabolic differences between attached and free-living marine bacteria: inadequacy of liquid cultures for describing in situ bacterial activity. FEMS Microbiol. Lett. 194: 111–119.

    Google Scholar 

  93. Pogliani, C. and Donati, E. (2000) Immobilisation of Thiobacillus ferrooxidans: importance of jarosite precipitation. Process Biochem. 35: 997–1004.

    Article  CAS  Google Scholar 

  94. Noll, T. and Biselli, M. (1998) Dielectric spectroscopy in the cultivation of suspended and immobilised hybridoma cells. J. Biotechnol. 63: 187–198.

    Article  CAS  Google Scholar 

  95. Yokoi, H.; Tokushige, T.; Hirose, J.; Hayashi, S. and Takasaki, Y. (1997) Hydrogen production by immobilised cells of aciduric Enterobacter aerogenes strain HO-39. J. Ferment. Bioeng. 83: 481–484.

    Google Scholar 

  96. Edgehill, R.E. (1996) Degradation of pentachlorophenol (PCP) by Arthrobacter strain ATCC 33790 in biofilm culture. Water Res. 30: 357–363.

    Article  CAS  Google Scholar 

  97. Truck, H.U.; Chmiel, H.; Hammes, W.P. and Trosch, W. (1990) A study of N- and P-dependence of nikkomycin production in continuous culture with immobilised cells. Appl. Microbiol. Biotechnol. 33: 139–144.

    Google Scholar 

  98. Porto, A.L.M.; Cassiola, F.; Dias, S.L.P.; Joekes, I.; Gushikem, Y.; Rodrigues, J.A.R.; Moran, P.J.S.; Manfio, G.P. and Marsaioli, A.J. (2002) Aspergillus terreus CCT 3320 immobilized on chrysotile or cellulose/TiO2 for sulfide oxidation. J. Mol. Catalysis (B: Enzymatic ) 19–20: 327–334.

    Google Scholar 

  99. Dahiya, J.; Singh, D. and Nigam, P. (2001) Decolourisation of molasses wastewater by cells of Pseudomonas fluorescens immobilised on porous cellulose carrier. Bioresource Technol. 78: 111–114.

    Article  CAS  Google Scholar 

  100. Kumar, N. and Das, D. (2001) Continuous hydrogen production by immobilised Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb. Technol. 29: 280–287.

    Google Scholar 

  101. Fujii, N.; Oki, T.; Sakurai, A.; Suye, S. and Sakakibara, M. (2001) Ethanol production from starch by immobilised Aspergillus awamori and Saccharomyces partorianus using cellulose carriers. J. Indust. Microbiol. Biotechnol. 27: 52–57.

    Google Scholar 

  102. Smogrovicova, D. and Domeny, Z. (1999) Beer volatile by-product formation at different fermentation temperature using immobilised yeasts. Process Biochem. 34: 785–794.

    Article  CAS  Google Scholar 

  103. van terse’, M.F.M.; van Dieren, B.; Rombouts, F.M. and Abee, T. (1999) Flavour formation and cell physiology during the production of alcohol-free beer with immobilized Saccharomyces cerevisiae, Enzyme Microb. Technol. 24: 407–411.

    Google Scholar 

  104. Fenice, M.; Di Giambattista, R.; Raetz, E.; Leuba, J.L. and Federici, F. (1998) Repeated-batch and continuous production of chitinolytic enzymes by Penicillium janthinellum immobilised on chemically-modified macroporous cellulose. J. Biotechnol. 62: 119–131.

    Article  CAS  Google Scholar 

  105. Liu, Y.K.; Seki, M.; Tanaka, H. and Furusaki, S. (1998) Characteristics of Loofa (Luffy cylindrica) sponge as a carrier for plant cell immobilisation. J. Ferment. Bioeng. 85: 416–421.

    Google Scholar 

  106. Chen, J.P. and Wang, J.B. (1997) Wax ester synthesis by lipase-catalyzed esterification with fungal cells immobilized on cellulose biomass support particles. Enzyme Microb. Technol. 20: 615–622.

    Google Scholar 

  107. Matsumura, M.; Yamamoto, T. Wang, P.C.; Shinabe, K. and Yasuda, K. (1997) Rapid nitrification with immobilized cell using macro-porous cellulose carrier. Water Res. 31: 1027–1034.

    Article  CAS  Google Scholar 

  108. Catalan-Sakairi, M.A.; Wang, P.C. and Matsumura, M. (1997) High-rate seawater denitrification utilizing a macro-porous cellulose carrier. J. Ferment. Bioeng. 83: 102–108.

    Google Scholar 

  109. Matsumura, M.; Tsubota, H.; Ito, O.; Wang, P.C. and Yasuda, K. (1997) Development of bioreactors for denitrification with immobilized cells. J. Ferment. Bioeng. 84: 144–150.

    Google Scholar 

  110. Ogbonna, J.C.; Tomiyama, S. and Tanaka, H. (1996) Development of a method for immobilisation of non-flocculating cells in loofa (Luffy cylindrica) sponge. Process Biochem. 31: 737–744.

    Article  CAS  Google Scholar 

  111. Kumakura, M.; Yoshida, M. and Asano, M. (1992) Preparation of immobilized yeast cells with porous substrates. Process Biochem. 27: 225–229.

    Article  CAS  Google Scholar 

  112. Bang, S.S.; Galinat, J.K. and Ramakrishnan, V. (2001) Calcite precipitation induced by polyurethane-immobilised Bacillus pasteurii. Enzyme Microb. Technol. 28: 404–409

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mavituna, F. (2004). Pre-Formed Carriers for Cell Immobilisation. In: Nedović, V., Willaert, R. (eds) Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1638-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6534-6

  • Online ISBN: 978-94-017-1638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics