Skip to main content

Part of the book series: Focus on Biotechnology ((FOBI,volume 8A))

Abstract

Proteins have unique material properties, which make them attractive for several applications including microencapsulation [1–7]. Actually, the first reported microencapsulation process, over 50 years ago, was the manufacture of microcapsules based on gelatin, intended for the development of carbonless copy paper [8]. Relevant protein properties for encapsulation purposes include surface active properties, good film forming and mechanical properties, high gas barrier properties, and high resistance to organic solvents and oils/fats [9]. As proteins can be obtained from many different sources, the variation in intrinsic properties is already very wide. Furthermore, because of the large variation in composition of proteins and their reactive groups, a broad range of modification reactions can be performed (e.g. physical, chemical, and enzymatic). Thus, protein properties can be tailored towards specific coating and encapsulation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kumar, R.; Choudhary, V.; Mishra, S.; Varma I.K. and Mattiason B. (2002) Adhesives and plastics based on soy protein products. Ind. Crops Prod. In Press.

    Google Scholar 

  2. de Graaf, L.A. (1998) Non-food applications of cereal proteins. Industrial Proteins 6: 9–11.

    Google Scholar 

  3. de Graaf, L.A.; Harmsen, P.F.H.; Vereijken, J.M. and Mönikes M. (2001) Requirements for non-food applications of pea proteins. Nahrung/Food 6: 408–411.

    Article  Google Scholar 

  4. Harmsen, P.F.H.; Veiner, E.M.; de Jonge, H.G.; Harrison, R.M.; Vereijken, J.M. and Vingerhoeds M.H. (2000) Pea protein isolates for microencapsulation purposes. In: Proceedings of the 27th Int. Symp. Control. Rel. Bioact. Mater., Paris (France); p. 556.

    Google Scholar 

  5. Shahidi, F. and Han, X.-Q. (1993) Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr 33 . 501547.

    Google Scholar 

  6. Jackson, L.S. and Lee, K. (1991) Microencapsulation and the food industry. Lebensm. Wiss. Technol. 24: 289–297.

    Google Scholar 

  7. Rosenberg, M. and Sheu, T-Y. (1996) Microencapsulation of volatiles by spray-drying in whey protein-based wall systems. Int. Diary Journal 6: 273–284.

    Google Scholar 

  8. Bungenberg de Jong, H.G. (1949) Crystallisation — coacervation — flocculation. In: Kruyt, H.R. (Ed.) Colloid Science. Elsevier, Amsterdam; pp. 232–258.

    Google Scholar 

  9. de Graaf, L.A. (2000) Denaturation of proteins from a non-food perspective. J. Biotechn. 79: 299–306. Proteins: versatile materials for encapsulation

    Google Scholar 

  10. Anonymous (2000) Protein Crops. In: Mangan, C. (Ed.) Inieca European Overview report. Brussels (Belgium); pp. 63–65.

    Google Scholar 

  11. Wong, S.S. (1991) Chemistry of protein conjugation and cross-linking. CRC Press, Inc., Boca Raton, Florida

    Google Scholar 

  12. Anker, M. (1996) Edible and biodegradable films and coatings for food packaging — a literature review. Department of food science, Chalmers University of Technology, Sweden.

    Google Scholar 

  13. Krochta, J.M. (1997) Edible protein films and coatings, In: Food Proteins and Their Applications in Foods. Marcel Dekker, New York; pp 529–550.

    Google Scholar 

  14. Liu, L.H. and Hung T.V. (1998) Functional properties of acetylated chickpea proteins. J. Food Sci. 63: 331–337.

    Article  CAS  Google Scholar 

  15. Zhang, J.; Lee, T.C. and Ho, C.T. (1993) Kinetics and mechanism of nonenzymatic deamidation of soy protein. J. Food Proc. Pres. 17: 259–268.

    Google Scholar 

  16. Zhang, J.; Lee, T.C. and Ho, C.-H. (1993) Thermal deamidation of proteins in a restricted water environment. J. Agric. Food Chem. 41: 1840–1843.

    Google Scholar 

  17. Shih, F.F. (1991) Effect of anions on the deamidation of soy protein. J. Food Sci. 56: 452–454.

    Article  CAS  Google Scholar 

  18. Wu, W.U.; Hettiarachchy, N.S. and Qi, M. (1998) Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by Papain modification and ultrafiltration. J. Am. Oil. Chem. Soc. 75: 845850.

    Google Scholar 

  19. Singh, H. (1991) Modification of food proteins by covalent crosslinking. Trends Food Sci. Technol. 2: 196–200.

    Google Scholar 

  20. Brault, D.; D’Aprano, G. and Lacroix, M. (1997) Formation of free-standing sterilized edible films from irradiated caseinates. J. Agric. Food Chem. 45: 2964–2969.

    Google Scholar 

  21. Koppelman, S.J. and Wijngaards, G. (1997) Enzymatische verknoping van eiwitten: een literatuurstudie. TNO Zeist, The Netherlands.

    Google Scholar 

  22. Babiker, E.E. (2000) Effect of transglutaminase treatment on the functional properties of native and chymotrypsin-digested soy protein. Food Chem. 70: 139–145.

    Article  CAS  Google Scholar 

  23. Yildrim, M. and Hettiarachchy, N.S. (1998) Properties of films produced by cross-linking whey proteins and l 1 S globulin using transglutaminase. J. Food Sci. 63 (2): 248–252.

    Article  Google Scholar 

  24. Michon, T.; Wang, W.; Ferrasson, E. and Guéguen J. (1999) Wheat prolamine crosslinking through dityrosine formation catalyzed by peroxidases: Improvement in the modification of a poorly accessible substrate by “indirect” catalysis. Biotechnol. Bioengineer. 63: 449–458.

    Google Scholar 

  25. Heijmen, F.H.; Pont, J.S. du; Middelkoop, E.; Kreis, R.W. and Hoekstra M.J. (1997) Cross-linking of dermal sheep collagen with tannic acid. Biomaterials 18: 749–754.

    Article  CAS  Google Scholar 

  26. Orienti, 1. and Zecchi, V. (1993) Progesterone-loaded albumin microparticles. J. Control. Release 27: 1–7.

    Google Scholar 

  27. Rose, P.I. (1988) Gelatin. In: Mark, H.F.; Bikales, N.M.; Overberger, C.G. and Menges, G. (Eds.) Encyclopedia of polymer science and engineering. John Wiley & Sons, New York; pp. 488–513.

    Google Scholar 

  28. Geiger, M. and Friess, W. (2002) Collagen Sponge Implants — Applications, Characteristics and Evaluation: part 1. Pharm. Techn. Eur. 14: 48–56.

    Google Scholar 

  29. Gennadios, A.; McHugh, T.H.; Weller, C.L. and Krochta J.M. (1994) Edible coatings and films based on Proteins (chapter 9). In: Krochta, J.M.; Baldwin, E.A. and Nisperos-Carriedo, M. (Eds.) Edible coatings and Films to Improve Food Quality. Technomic Publishing Company Inc., Lancaster; pp. 201–277.

    Google Scholar 

  30. Stryer, L. (1988) Protein structure and function. In: Stryer, L. (Ed.) Biochemistry. W.H. Freeman and Company, New York; pp. 15–42.

    Google Scholar 

  31. Grobben, A.H. and Visser, A. (1997) Collagen and gelatin: related proteins used in food products. Industrial Proteins 4: 7–8.

    Google Scholar 

  32. Wade, A. and Weller, P.J. (1994) Gelatin. In: Handbook of pharmaceutical excipients, 2nd Edition. APA; The Pharmaceutical Press; pp 199–201.

    Google Scholar 

  33. Mulder, W. (1997) Gelatin in photographic systems. Industrial Proteins 4: 8–12.

    Google Scholar 

  34. Daniels, R. and Mittermaier, E.M. (1995) Influence of pH adjustment on microcapsules obtained from complex coacervation of gelatin and acacia. J. Microencaps. 12: 591–599.

    Article  CAS  Google Scholar 

  35. Akin, H. and Hasirci, N. (1994) Effect of loading on the release of 2,4–D from polymeric microspheres. Pol. Preprints 35: 765–766.

    Google Scholar 

  36. Tirkkonen, S.; Turakka, L. and Paronen, P. (1994) Microencapsulation of indomethacin by gelatin-acacia complex coacervation in the presence of surfactants. J. Microencaps. 11: 615–626.

    Article  CAS  Google Scholar 

  37. van den Bent, P.M.L.A.; Verzijl, J.M. and van Roon E.N. (1997) Prions: contamination, and decontamination, interfaces with pharmacy. Pharm. Weekblad 132: 143–149.

    Google Scholar 

  38. Anonymous (1999) Note for the guidance for minimising the risk of transmitting animal spongiform encephalopathy agents via veterinary medicinal products. EMEA, 7 Westferry Circus, Canary Wharf, London E14 4HB, UK.

    Google Scholar 

  39. Anonymous (2000) European Pharmacopoeia Supplement. EDQM, 226 Avenue de Colmar, BP 907, F67029, Strassbourg, France.

    Google Scholar 

  40. Anonymous (2001) Rote Liste 2001. Aulendorf, Germany Cantor Verlag.

    Google Scholar 

  41. Yoshimura, K.; Terashima, M.; Hozan, D., Ebato, T.; Nomura, Y.; Ishii, Y. and Shirai, K. (2000) Physical properties of shark gelatin compared with pig gelatin. J. Agric. Food Chem 48: 2023–2027.

    Google Scholar 

  42. Nomura, Y.; Toki, S.; Ishii, Y. and Shirai, K. (2000) The physicochemical property of shark type I collagen gel and membrane. J. Agric. Food Chem 48: 2028–2032.

    Google Scholar 

  43. Werten, M.W.T.; Wisselink, W.H.; Jansen-van den Bosch, T.J.; de Bruin, E.C. and de Wolf, F.A. (2001) Secreted production of a custum-designed, highly hydrophilic gelatin in Pichia pastoris. Prot. Engineer. 14: 447–454.

    Google Scholar 

  44. Werten, M.W.T.; van den Bosch, T.J.; Wind, R.J.; Mooibroek, H. and de Wolf, F.A. (1999) High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast 15: 1087–1096.

    Article  CAS  Google Scholar 

  45. de Wolf, F.A. and Werten, M.W.T. (2001) Gelatins from yeast provide novel possibilities. Industrial Proteins 8: 9–12.

    Google Scholar 

  46. de Bruin, E.C.; Werten, M.W.T.; Laane, C. and de Wolf, F.A. (2002) Endogenous prolyl 4–hydroxylation in Hansenula polymorpha and its use for the production of hydroxylated recombinant gelatin. FEMS Yeast Research, in press.

    Google Scholar 

  47. Dalgleish, D.G. (1989) Milk proteins — chemistry and physics. In: Kinsella, J.E. and Soucie, W.G. (Eds.) Food Proteins. American Oil Chemists Society Champagne, IL; pp. 155–178.

    Google Scholar 

  48. Visser H. and Paulsson M. (2001) Beta-lactoglobulin: a whey protein with unique properties. Industrial Proteins 9: 9–12.

    Google Scholar 

  49. Kinsella, J.E. (1984) Milk proteins: physicochemical and functional properties. CRC Crit. Rev. Food Sci 21: 197–262.

    Google Scholar 

  50. Brunner, J.R. (1977) Milk proteins. In: Whitaker, J.R. and Tannenbaum, S.R. (Eds.) Food Proteins. AV1 Publishers, Inc. Westport, CT; pp. 175–208.

    Google Scholar 

  51. Corrigan, 0.1. and Heelan, B.A. (2001) Characterization of drug release from diltiazem-loaded polylactide microspheres using sodium caseinate and whey proteins as emulsifying agents. J. Microencaps. 18: 335–345.

    Google Scholar 

  52. Yufera, M.; Pascual, E. and Fernandez-Diaz, C. (1999) A highly efficient microencapsulated food for rearing early larvae of marine fish. Aquaculture 177: 249–256.

    Article  CAS  Google Scholar 

  53. Alarcon, F.J.; Moyano, F.J.; Diaz, M.; Fernandez-Diaz, C. and Yufera, M. (1999) Optimization of the protein fraction of microcapsules used in feeding of marine fish larvae using in vitro digestibility techniques. Aquac. nutr. 5: 107–113.

    Article  Google Scholar 

  54. Hogan, S.A.; McNamee, B.F.; O’Riordan, E.D. and O’Sullivan, M. (2001) Microencapsulating properties of sodium caseinate. J. Agric. Food Chem. 49: 1934–1938.

    Google Scholar 

  55. Latha, M.S.; Lal, A.V.; Kumary, T.V.; Sreekumar, R. and Jayakrishnan, A. (2000) Progesterone release from glutaraldehyde cross-linked casein microspheres: In vitro studies and in vivo response in rabbits. Contraception 61: 329–334.

    Article  CAS  Google Scholar 

  56. Keogh, M.K.; O’Kennedy, B.T.; Kelly, J.; Auty, M.A.; Kelly, P.M.; Frby, A. and Haahr, A.M. (2001) Stability to oxidation of spray dried fish oil powder microencapsulated using milk ingredients. J. Food Sci. 66: 217–224.

    Article  CAS  Google Scholar 

  57. Yu, J.Y. and Lee, W.C. (1997) Microencapsulation of pyrrolnitrin from Pseudomonas cepacia using gluten and casein. J. Ferment. Bioeng. 84: 444–448.

    Google Scholar 

  58. McHugh, T.H. and Krochta, J.M. (1994) Permeability properties of edible films (chapter 7). In: Krochta, J.M.; Baldwin, E.A. and Nisperos-Carriedo, M. (Eds.) Edible coatings and Films to Improve Food Quality. Technomic Publishing Company Inc. Lancaster; pp. 139–187.

    Google Scholar 

  59. De Wit, J.N. and Moulin, J. (2001) Whey protein isolates: manufacture, properties and applications. Industrial Proteins 9: 6–8.

    Google Scholar 

  60. De Wit J.N. (2001) Whey protein concentrates: manufacture, composition and applications. Industrial Proteins 9: 3–5.

    Google Scholar 

  61. Moreau, D.L. and Rosenberg, M. (1993) Microstructure and fat extractability in microcapsules based on whey proteins or mixtures of whey proteins and lactose. Food Structure 12: 457–468.

    CAS  Google Scholar 

  62. Moreau, D.L. and Rosenberg, M. (1996) Oxidative stability of anhydrous milk fat microencapsulated in whey proteins. J. Food Sci. 61 (1): 39–43.

    Article  CAS  Google Scholar 

  63. Sheu, T-Y. and Rosenberg, M. (1995) Microencapsulation by spray drying ethyl caprylate in whey protein and carbohydrate wall systems. J. Food Sci. 60: 98–103.

    Article  CAS  Google Scholar 

  64. Rosenberg, M. and Young, S.L. (1993) Whey proteins as microencapsulating agents. Microencapsulation of anhydrous milk fat — structure evaluation. Food Structure 12: 31–41.

    Google Scholar 

  65. Lee, S.J. and Rosenberg, M. (2001) Microencapsulation of theophylline in composite wall system consisting of whey proteins and lipids. J. Microencaps. 18: 309–321.

    Article  CAS  Google Scholar 

  66. Lee, S.J. and Rosenberg, M. (2000) Preparation and some properties of water-insoluble, whey protein-based microcapsules. J. Microencaps. 17: 29–44.

    Article  CAS  Google Scholar 

  67. Schrooyen, P. (1999) Feather keratins: modification and film formation. Ph.D. Thesis, University of Twente, Enschede, The Netherlands.

    Google Scholar 

  68. Yanauchi, K.; Maniwa,.M. and Mori, T. (1998) Cultivation of fibroblast cells on keratin-coated substrate. J. Biomater. Sci. 9: 259–270.

    Google Scholar 

  69. Friedli, G.L. (1996) Interaction of deamidated soluble wheat protein (SWP) with other food proteins and metals. Ph.D. thesis, University of Surrey, UK.

    Google Scholar 

  70. Damodaran, S. and Kinsella, J.E. (1980) Flavor protein interactions. Binding of carbonyls to bovine serum albumin: thermodynamic and conformational effects. J. Agric. Food Chem. 28: 567–571.

    Google Scholar 

  71. Egbaria, K. and Friedman, M. (1992) Physicochemical properties of albumin microspheres determined by spectroscopic studies. J. Pharm. Sci. 81 (2): 186–190.

    Article  CAS  Google Scholar 

  72. Luftensteiner, Ch.P.; Horaczek, A.; Maly, P. and Viernstein, H. (1999) Preparation and characterization of hydrophilic and non-aggregating albumin microspheres for intravenous administration. Pharm. Pharmacol. Lett. 9: 44–47.

    Google Scholar 

  73. Larionova, N.V.; Kazanskaya, N.F.; Larionova, N.i.; Ponchel, G. and Duchene, D. (1999) Preparation and characterization of microencapsulated proteinase inhibitor aprotinin. Biochem. 64: 857–862.

    CAS  Google Scholar 

  74. Tulsani, N.B.; Kumar, A.; Pasha, Q.; Kumar, H. and Sarma, U.P. (2000) Immobilization of hormones for drug targeting. Art. Cells Blood Subst. Immob. Biotechn. 28: 503–519.

    Google Scholar 

  75. Ishizaka T.; Endo K. and Koishi M. (1981) Preparation of egg albumin microcapsules and microspheres. J. Pharm. Sci. 70 (4): 358–363.

    Article  CAS  Google Scholar 

  76. Ishizaka, T. and Koishi, M. (1983) In vitro drug release from egg albumin microcapsules. J. Pharm. Sci. 72(9): 1057–1061.

    Google Scholar 

  77. Tomlinson, E.; Burger, J.J.; Schoonderwoerd, E.M.A. and McVie, J.G. (1984) Human serum albumin microspheres for intraarterial drug targeting of cytostatic compounds: Pharmaceutical aspects and release characteristics. In: Davis, S.S.; ilium, L.; McVie, J.G. and Tomlinson, E. (Eds.) Microspheres and Drug Therapy: Pharmaceutical, Immunological and Medical Aspects. Elsevier Science Publishers, Amsterdam; pp. 75–89.

    Google Scholar 

  78. Egbaria, K. and Friedman, M. (1992) Adsorption of fluorescein dyes on albumin microspheres. Pharm. Res. 9 (5): 629–635.

    Article  CAS  Google Scholar 

  79. Sontum, P.C.; Walday, P.; Drystad, K.; Hoff, L.; Frigstad, S. and Chistiansen, C. (1997) Effect of microsphere size distribution on the ultrasonographic contrast efficacy of air-filled albumin microspheres in the left ventricle of dog heart. Invest. Radiol. 32: 627–635.

    Google Scholar 

  80. Killam, A.L.; Mehlhaff, P.M.; Zavorskas, P.A.; Greener, Y.; McFerran, B.A.; Miller, J.J.; Burrascano, C.; Jablonski, E.G.; Anderson, L. and Dittrich, H.C. (1999) Tissue distribution of 1251–labeled albumin in rats, and whole blood and exhaled elimination kinetics of octafluropropane in anesthetized canines, following intravenous administration of OPTISON(R) (FS069). Int. J. Toxicol. 18: 49–63.

    Google Scholar 

  81. Greener, Y.; Killam, A.L.; Cornell, S.T.; Osheroff, M.R. and Wolford, S.T. (1998) Nonclinical safety assessment of intravenous Optison: A perfluoropropane (PFP)-filled albumin microspheres contrast agent for ultrasonography. Int. J. Toxicol. 17: 631–662.

    Google Scholar 

  82. Clark, L.N. and Dittrich, H.C. (2000) Cardiac imaging using Optison. Am. J. Cardiol. 86: 14G - 18G.

    Article  CAS  Google Scholar 

  83. Truter, E.J.; Santos, A.S. and Els, W.J. (2001) Assessment of the antitumor activity of targeted immunospecific albumin microspheres loaded with cisplatin and 5–fluorouracil: Toxicity against a rodent ovarian carcinoma in vitro. Cell Biol. Int. 25: 51–59.

    Google Scholar 

  84. Luftensteiner, C.P.; Schwendenwein, 1.; Paul, B.; Eichler, H.G. and Viernstein, H. (1999) Evaluation of mitoxantrone-loaded albumin microspheres following intraperitoneal administration to rats. J. Control. Release 57: 35–44.

    Google Scholar 

  85. Luftensteiner, C.P. and Viernstein, H. (1998) Statistical experimental design based studies on placebo and mitoxantrone-loaded albumin microspheres. Int. J. Pharm. 171: 87–99.

    Google Scholar 

  86. Chen, Y.; McCulloch, R.K. and Gray, B.N. (1994) Synthesis of albumin-dextran sulfate microspheres possessing favourable loading and release characteristics for the anticancer drug doxorubicin. J. Control. Release 31: 49–54.

    Google Scholar 

  87. Merodio, M.; Arnedo, A.; Renedo, M.J. and Irache, J.M. (2001) Ganciclovir-loaded albumin nanoparticles: Characterization and in vitro release properties. Eur. J. Phann. Sci. 12: 251–259.

    Google Scholar 

  88. Ozkan, Y; Dikmen, N.; lsimer, A.; Gunham, O. and Aboul, E.H.Y. (2000) Clarithromycin targeting to lung: Characterization, size distribution and in vivo evaluation of the human serum albumin microspheres. Fannaco-Lausanne 55: 303–307.

    CAS  Google Scholar 

  89. Pande, S.; Vyas, S.P. and Dixit, V.K. (1991) Localized rifampicin albumin microspheres. J Microencaps. 8: 87–93.

    Article  CAS  Google Scholar 

  90. Bernardo, M.V.; Blanco, M.D.; Gomez, C.; Olmo, R. and Teijon, J.M. (2000) In vitro controlled release of bupivacaine from albumin microspheres and a co-matrix formed by microspheres in a poly(lactide-coglycolide) film. J. Microencaps. 17: 721–731.

    Google Scholar 

  91. Lin, W.; Garnett, M.C.; Schacht, E.; Davis, S.S. and Ilium, L. (1999) Preparation and in vitro characterization of HSA-mPEG nanoparticles. Int. J. Pharm. 189: 161–170.

    Google Scholar 

  92. Lin, W.; Garnett, M.C.; Davis, S.S.; Schacht, E.; Ferruti, P. and Ilium, L. (2001) Preparation and characterisation of rose Bengal-loaded surface-modified albumin nanoparticles. J. Control. Release 71: 117226.

    Google Scholar 

  93. Roser, M.; Fischer, D. and Kissel, T. (1998) Surface-modified biodegradable albumin nano-and microspheres. II: Effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur. J. Pharm. Biopharm. 46: 255–263.

    Google Scholar 

  94. Weber, C.; Reiss, S. and Langer, K. (2000) Preparation of surface modified protein nanoparticles by introduction of sulfhydryl groups. Int. J. Pharm. 211: 67–78.

    Google Scholar 

  95. Weber, C.; Kreuter, J. and Langer, K. (2000) Desolvation process and surface characteristics of HSAnanoparticles. Int. J. Pharm. 196: 197–200.

    Google Scholar 

  96. Weber, C.; Coester, C.; Kreuter, J. and Langer, K. (2000) Desolvation process and surface characterisation of protein nanoparticles. Int. J. Pharm. 194: 91–102.

    Google Scholar 

  97. Krull, L.H. and Inglett, G.E. (1971) Industrial Uses of Gluten. Cereal Sci. Today 16: 232–236, 261.

    Google Scholar 

  98. Ezpeleta, I.; Irache, J.M.; Stainmesse, S.; Chabenat, C.; Guéguen, J.; Popineau, Y. and Orecchioni, A.M. (1996) Gliadin nanoparticles for the controlled release of all-trans-retinoic acid. Int. J. Pharm. 131: 191–200.

    Google Scholar 

  99. Wu, C.H.; Shuryo, N. and Powrie, W.D. (1976) Preparation and properties of acid solubilized gluten. J. Agric. Food Chem. 24: 504–510.

    Google Scholar 

  100. Kato, A.; Tanaka, A.; Lee, Y.; Matsudomi, N. and Kobayashi, K. (1987) Effects of deamidation with chymotrypsin at pH 10 on the functional properties of proteins. J. Agric. Food Chem. 35: 285–288.

    Google Scholar 

  101. Bollecker, S.; Viroben, G.; Popineau, Y. and Guéguen, J. (1990) Acid deamidation and enzymic modification at pH 10 of wheat gliadins: influence on their functional properties. Sci. Aliments 10: 343–356.

    Google Scholar 

  102. Popineau, Y. and Thebaudin, J.Y. (1990) Functional properties of enzymatically hydrolyzed glutens. In: Bushuk, W. and Tkachuk, R. (Eds.) Gluten Proteins. AACC, St Paul, MN; pp. 277–286.

    Google Scholar 

  103. Shukla, R. and Cheryan, M. (2001) Zein: the industrial protein from corn. Ind. Crop Prod. 13: 171–192.

    Google Scholar 

  104. Mazer, T. (1999) Zein, the versatile reverse enteric. In: Proceedings of the 26th Int. Symp. Control. Rel. Bioact. Mat., Boston, USA, CRS Inc.; pp. 267–268.

    Google Scholar 

  105. Mathiowitz, E.; Bernstein, H.; Morrel, E. and Schwaller, K. (1993) Method for producing protein microspheres. US Patent 5,271,961, Alkermes Controlled Therapeutics, Inc. USA.

    Google Scholar 

  106. Yoshimaru, T.; Takahashi, H. and Matsumoto, K. (2000) Microencapsulation of L-lysine for improving the balance of amino acids in ruminants. J. Faculty Agric., Kyushu Univ. 44: 359–365.

    Google Scholar 

  107. Zibell, S.E. (1989) Chewing gum containing zein coated high-potency sweetener and method. US Patent 4,863,745, Wm. Wrigley Jr., Chicago, IL, USA.

    Google Scholar 

  108. Zibell, S.E.; Yatka, R.J. and Tyrpin, H.T. (1992) Aqueous zein coated sweeteners and other ingredients for chewing gum. US Patent 5,112,625, Wm. Wrigley Jr., Chicago, IL,USA.

    Google Scholar 

  109. Courtright, S.B. and Barrett, K.F. (1990) Chewing gum containing high-potency sweetener particles with modified zein coating. US Patent 4,931,295. Wm. Wrigley Jr., Chicago, IL, USA.

    Google Scholar 

  110. Campbell, A.A. and Zibell, S.E. (1992) Zein/shellac encapsulation of high intensity sweeteners in chewing gum. US Patent 5,164,210, Wm. Wrigley Jr. Company, USA.

    Google Scholar 

  111. Demchak, R.J. and Dybas, R.A. (1997) Photostability of abamectin/zein microspheres. J. Agric. Food Chem. 45: 260–262.

    Google Scholar 

  112. Mazer, T.B.; Meyer, G.A.; Hwang, S.-M.; Candler, E.L.; Drayer, L.R. and Daab-Krzykowski, A. (1992) System for delivering an active substance for sustained release. US Patent 5,160,742, Abbott Laboratories, USA.

    Google Scholar 

  113. Ardaillon, P. and Bourrain, P. (1991) Granules for feeding ruminants with an enzymatically degradable coating. US Patent 4,983,403, Rhone-Poulenc Sante, France.

    Google Scholar 

  114. Autant, P.; Cartillier, A. and Pigeon, R. (1989) Compositions for coating feeding stuff additives intended for ruminants and feeding stuff additives thus coated. US Patent 4,876,097, Rhone-Poulenc Sante, France.

    Google Scholar 

  115. Kinsella, J.E. (1979) Functional properties of soy proteins. J. Am. Oil Chem. Soc. 56: 242–258.

    Google Scholar 

  116. McHugh, T.H. (1993) Effects of chemical properties and physical structure on mass transfer in whey protein-based edible films system. Ph.D. Thesis, University of California, Davis, USA.

    Google Scholar 

  117. Rhim, J.W.; Gennadios, A.; Weller, C.L. and Hanna, M.A. (2002) Sodium dodecyl sulfate treatment improves properties of cast films from soy protein isolate. Ind. Crops Prod. 15: 199–205.

    Google Scholar 

  118. Atterholt, C.A.; Delwiche, M.J.; Rice, R.E. and Krochta, J.M. (1998) Study of biopolymers and paraffin as potential controlled-release carriers for insect pheromones. J. Agric. Food Chem. 46: 4429–4434.

    Google Scholar 

  119. Wilson, W.W.; Polemenakos, S.C.; Potter, J.L.; Mangold, D.J.; Harlowe, W.W. and Schlameus, H.W. (1989) Microencapsulated and bait. US Patent 4,874,611, The Dow Chemical Company, USA.

    Google Scholar 

  120. Vaz, C.M.; de Graaf, L.A.; Reis, R.L. and Cunha, A.M. (2002) Soy protein-based systems for different tissue regeneration applications. In: Reis, R.L. and Cohn, D. (Eds.) Polymer based systems on tissue engineering, replacement and regenration. Kluwer Academic Publ., Dordrecht, The Netherlands; (in press)

    Google Scholar 

  121. Guéguen, J. and Cerletti, P. (1994) Legume seed proteins. In: Hudson, B.J.F. (Ed.) New and developing sources of food proteins. Chapman and Hall, London, UK; p. 145.

    Chapter  Google Scholar 

  122. Guéguen, J. (2000) Pea proteins: new and promising protein ingredients. Industrial Proteins 8: 6–8.

    Google Scholar 

  123. Franco, J.M.; Partal, P.; Ruiz-Marquez, D.; Conde, B. and Gallegos, C. (2000) Influence of pH and protein thermal treatment on the rheology of pea protein-stabilized oil-in-water emulsions. J. Am. Oils Chem. Soc. 77: 975–983.

    Google Scholar 

  124. Lu, B.Y.; Quillien, L. and Popineau, Y. (2000) Foaming and emulsifying properties of pea albumin fractions and partial characterisation of surface-active components. J. Sci. Food Agric. 80: 1964–1972.

    Google Scholar 

  125. Sijtsma, L.; Tezera, D.; Hustinx, J. and Vereijken, J.M. (1998) Improvement of pea protein quality by enzymatic modification. Nahrung/Food 42: 215–216.

    Article  CAS  Google Scholar 

  126. Legrand, J.; Guéguen, J.; Berot, S.; Popineau, Y. and Nouri, L. (1997) Acetylation of pea isolate in a torus microreactor. Biotechnol. Bioengin. 53: 409–414.

    Google Scholar 

  127. Hannsen, P.F.H.; Vingerhoeds, M.H.; Berendsen, L.B.J.M.; Harrison, R.M. and Vereijken, J.M. (2001) Microencapsulation of 13–carotene by supercritical CO2 technology. IFSCC Magazine 4: 34–36.

    Google Scholar 

  128. Irache, J.M.; Bergounoux, L.; Ezpeleta, 1.; Guéguen, J. and Orecchioni, A.M. (1995) Optimization and in vitro stability of legumin nanoparticles obtained by a coacervation method. Int. J. Pharm. 126: 103–109.

    Google Scholar 

  129. Ezpeleta, 1.; hache, J.M.; Stainmesse, S.; Chabenat, C.; Guéguen, J. and Orecchioni, A.-M. (1996) Preparation of lectin-vicilin nanoparticle conjugates using the carbodiimide coupling technique. Int. J. Pharm. 142: 227–233.

    Google Scholar 

  130. Mirshahi, T.; hache, J.M.; Guéguen, J. and Orecchioni, A.M. (1996) Development of drug delivery systems from vegetal proteins: legumin nanoparticles. Drug Dev. Ind. Pharm. 22: 841–846.

    Google Scholar 

  131. Ezpeleta, I.; hache, J.M.; Guéguen, J. and Orecchioni, A.M. (1997) Properties of glutaraldehyde cross-linked vicilin nano-and microparticles. J. Microencaps. 14 (5): 557–565.

    Article  CAS  Google Scholar 

  132. Benoit, J-P.; Marchais, H.; Rolland, H. and van de Velde, V. (1996) Biodegradable microspheres: advances in production technology. In: Benita, S. (Ed.) Microencapsulation: methods and industrial applications. Marcel Dekker Inc., New York; pp. 36–72.

    Google Scholar 

  133. Re, M.I. (1998) Microencapsulation by spray drying. Drying Techn. 16: 1195–1236.

    Article  CAS  Google Scholar 

  134. Giunchedi, P. and Conte, U. (1995) Spray-drying as preparation method of microparticulate drug delivery systems: an overview. S.T.P. Pharma Sciences 5: 276–290.

    Google Scholar 

  135. Keogh, M.K. and O’Kennedy, B.T. (1999) Milk fat encapsulation using whey proteins. Int. Diary J. 9: 657–663.

    Google Scholar 

  136. Moreau, D.L. and Rosenberg, M. (1998) Porosity of whey protein-based microcapsules containing anhydrous milkfat measured by gas displacement pycnometry. J. Food Sci. 63: 819–823.

    Article  CAS  Google Scholar 

  137. Rosenberg, M. (1997) Milk derived whey protein-based microencapsulating agents and a method of use. US Patent 5,601,760, University of California, USA.

    Google Scholar 

  138. Young, S.L.; Sarda, X. and Rosenberg, M. (1993) Microencapsulating properties of whey proteins. 1. Microencapsulation of anhydrous milk fat. J. Dairy Sci. 76: 2868–2877.

    Google Scholar 

  139. Moreau, D.L. and Rosenberg, M. (1999) Porosity of microcapsules with wall systems consisting of whey proteins and lactose measured by gas displacement pycnometry. J. Food Sci. 64: 405–409.

    Article  CAS  Google Scholar 

  140. Sheu, T.-Y. and Rosenberg, M. (1998) Microstructure of microcapsules consisting of whey proteins and carbohydrates. J. Food Sci. 63: 491–494.

    Article  CAS  Google Scholar 

  141. Young, S.L.; Sarda, X. and Rosenberg, M. (1993) Microencapsulating properties of whey proteins. 2. Combination of whey proteins with carbohydrates. J. Dairy Sci. 76: 2878–2885.

    Google Scholar 

  142. O’Brien, C.M.; Grau, H.; Neville, D.P.; Keogh, M.K. and Arendt, E.K. (2000) Effects of microencapsulated high-fat powders on the emperical and fundamental rheology properties of wheat flour doughs. Cereal Chem. 77: 111–114.

    Article  Google Scholar 

  143. Kim, Y.D. and Morr, C.V. (1996) Microencapsulation properties of gum arabic and several food proteins: spray-dried orange oil emulsion particles. J. Agric. Food Chem. 44: 1314–1320.

    Google Scholar 

  144. Kim, Y.D.; Mon, C.V. and Schenz, T.W. (1996) Microencapsulation properties of gum arabic and several food proteins: liquid orange oil emulsion particles. J. Agric. Food Chem. 44: 1308–1313.

    Google Scholar 

  145. Faldt, P. and Bergenstahl, B. (1996) Spray-dried whey-protein/lactose/soybean oil emulsions 1. Surface composition and particle structure. Food hydrocolloids 10: 421–429.

    Google Scholar 

  146. Faldt, P. and Bergenstahl, B. (1996) Spray-dried whey-protein/lactose/soybean oil emulsions 2. Redispersability, wettability and particle structure. Food hydrocolloids 10: 431–439.

    Google Scholar 

  147. Pavanetto, F.; Genta, I.; Guinchedi, P.; Conti, B. and Conte, U. (1994) Spray-dried albumin microspheres for the intra-articular delivery of dexamethasone. J. Microencaps. 11: 445–454.

    Article  CAS  Google Scholar 

  148. Jones, D.M. (1988) Air suspension coating. Pharm. Technol. Enc. January 1988: 2–27.

    Google Scholar 

  149. Hall, H.S. and Pondell, R.E. (1980) The Wurster process. In: Kydonieus, A.F. (Ed.) Controlled release technologies: Methods, theory and applications. CRC Press, New York; pp. 133–155.

    Google Scholar 

  150. Dewettinck, K. and Huyghebaert, A. (1998) Top-spray fluidized bed coating: effect of process variables on coating efficiency. Food Sci. Techn. 31: 568–575.

    Google Scholar 

  151. Scheffer, R.J.; Harmsen, P.F.H. and Drift, van der E. (2000) Release of agrochemicals in relation to seed treatments. In: Proceedings of the 27th Int. Symp. Control. Rel. Bioact. Mater., Paris (France); p. 551.

    Google Scholar 

  152. Yuryev, V.P.; Zasypkin, D.V. and Tolstoguzov, V.B. (1990) Structure of protein texturates obtained by thermoplastic extrusion. Die Nahrung 34: 607–613.

    Article  Google Scholar 

  153. Tolstoguzov, V.B. (1993) Thermoplastic extrusion — the mechanism of the formation of extrudate structure and properties. JAOCS 70: 417–424.

    Article  CAS  Google Scholar 

  154. Swisher, H.E. (1957) Solid essential-oil containing components. US Patent 2,809, 895.

    Google Scholar 

  155. Yilmaz, G.; Jongboom, R.O.J.; van Soest, J.J.G. and Feil, H. (1999) Effect of glycerol on the morphology of starch-sunflower oil composites. Carboh. Polym. 38: 33–39.

    Google Scholar 

  156. Yilmaz, G.; Jongboom, R.O.J.; Feil, H. and Hennink, W.E. (2001) Encapsulation of sunflower oil in starch matrices via extrusion: effect of the interfacial properties and processing conditions on the formation of dispersed phase morphologies. Carboh. Polym. 45: 403–410.

    Google Scholar 

  157. Camire, M.E. (1991) Protein functionality modification by extrusion cooking. JAOCS 68: 200–205.

    Article  CAS  Google Scholar 

  158. Ledward, D.A. and Tester, R.F. (1994) Molecular transformations of proteinaceous foods during extrusion processing. Trends Food Sci. Techn. 5: 117–120.

    Google Scholar 

  159. Prudencio-Ferreira, S.H. and Areas, J.A.G. (1993) Protein-protein interactions in the extrusion of soya at various temperatures and moisture contents. J. Food Sci 58: 378–381.

    Article  CAS  Google Scholar 

  160. Sair, L. and Sair, R.A. (1980) Food supplement concentrate in a dense glasseous extrudate. US Patent 4,232,047, Griffith Laboratories, USA.

    Google Scholar 

  161. Black, M.; Popplewell, L.M. and Porzio, M.A. (1998) Controlled release encapsulation compositions. US Patent 5,756,136, McCormick & Company, USA.

    Google Scholar 

  162. Vaz, C.M.; van Doeveren, P.F.N.M.; Yilmaz, G.; de Graaf, L.A.; Reis, R.L. and Cunha, A.M. (submitted for publication) Processing and characterization of biodegradable soy thermoplastics: Effect of crosslinking with glyoxal and thermal treatment. ATO, Wageningen, The Netherlands.

    Google Scholar 

  163. Arshady, R. (1990) Microspheres and microcapsules: a survey of manufacturing techniques. Part 2: Coacervation. Polym. Eng. Sci. 30: 905–914.

    Google Scholar 

  164. Burgess, D.J. (1990) Practical analysis of complex coacervate systems. J. Colloid Interf. Sci. 140: 227238.

    Google Scholar 

  165. Tsung, M. and Burgess, D.J. (1997) Preparation and stabilization of heparin/gelatin complex coacervate microcapsules. J. Pharm. Sci. 86: 603–607.

    Google Scholar 

  166. Michon, C.; Cuvelier, G.; Launay, B.; Parker, A. and Takerkart, G. (1995) Study of the compatibility/incompatibility of gelatin/iota-carrageenan/water mixtures. Carboh. Polym. 28: 333–336.

    Google Scholar 

  167. Remuiian-Lopez, C. and Bodmeier, R. (1996) Effect of formulation and process variables on the formation of chitosan-gelatin coacervates. Int. J. Pharm. 135: 63–72.

    Google Scholar 

  168. Vinetsky, Y. and Magdassi, S. (1997) Formation of surface properties of microcapsules based on gelatin-sodium dodecyl sulphate interactions. Colloids and surfaces A: Physicochem. Eng. Aspects 122: 227–235.

    Google Scholar 

  169. Schmitt, C.; Sanchez, C.; Thomas, F. and Hardy, J. (1999) Complex coacervation between 13lactoglobulin and acacia gum in aqueous medium. Food Hydrocolloids 13: 483–496.

    Article  CAS  Google Scholar 

  170. Schmitt, C.; Sanchez, C.; Despond, S.; Renard, D.; Thomas, F. and Hardy, J. (2000) Effect of protein aggregates on the complex coacervation between 13–lactoglobulin and acacia gum at pH 4.2. Food Hydrocolloids 14: 403–413.

    Article  CAS  Google Scholar 

  171. Soper, J.C. and Thomas, M.T. (2001) Enzymatically protein encapsulating oil particles by complex coacervation. US Patent 6,325,951, Givaudan Roure Flavors Corporation, USA.

    Google Scholar 

  172. Soper, J.C. and Thomas, M.T. (2000) Enzymatically protein encapsulating oil particles by complex coacervation. US Patent 6,039,901, Givaudan Roure Flavors Corporation, USA.

    Google Scholar 

  173. Rabiskova, M.; Song, J.; Opawale, F.O. and Burgess, D.J. (1994) The influence of surface properties on uptake of oil into complex coacervate microcapsules. J. Pharm. Pharmacol. 46: 631–635.

    Google Scholar 

  174. Rabiskova, M. and Valaskova, J. (1998) The influence of HLB on the encapsulation of oils by complex coacervation. J. Microencaps. 15: 747–751.

    Article  CAS  Google Scholar 

  175. Oyez, B.; Çitak, B.; Oztemel, D.; Balbas, A.; Peker, S. and Çakir, S. (1997) Variation of droplet sizes during the formation of microcapsules from emulsions. J. Microencaps. 14: 489–499.

    Article  Google Scholar 

  176. Cabeza, L.F.; Taylor, M.M.; Brown, E.M. and Manner, W.N. (1999) Potential applications for gelatin isolated from chromium-containing solid tannery waste: microencapsulation. JALCA 94: 182–189.

    CAS  Google Scholar 

  177. Ribeiro, A.; Arnaud, P.; Frazao, S.; Venancio, F. and Chaemeil, J.C. (1997) Development of vegetable extracts by microencapsulation. J. Microencaps. 14: 735–742.

    Article  CAS  Google Scholar 

  178. Amiet-Charpentier, C.; Benoit, J.P.; Gadille, P. and Richard, J. (1998) Preparation of rhizobacteriacontaining polymer microparticles using a complex coacervation method. Colloids Surfaces A: Physicochem. Eng. Aspects 144: 179–190.

    Google Scholar 

  179. Burgess, D.J. and Singh, O.N. (1993) Spontaneous formation of small sized albumin/acacia coacervate particles. J. Pharm. Pharmacol. 43: 586–591.

    Google Scholar 

  180. Burgess, D.J. and Ponsart, S. (1998) B-Glucuronidase activity following complex coacervation and spray drying microencapsulation. J. Microencaps. 15: 569–579.

    Article  CAS  Google Scholar 

  181. Yoshioka, T.; Hashida, M.; Murinashi, S. and Sezaki, H. (1981) Specific delivery of mitomycin C to the liver, spleen and lung: nano-and microspherical carriers of gelatin. Int. J. Pharm. 81: 131–141.

    Google Scholar 

  182. Chemtob, C.; Assimacopoulos, T. and Chaumeil, J.C. (1988) Preparation and characteristics of gelatin microspheres. Drug Dev. Ind. Pharm. 14: 1359–1374.

    Google Scholar 

  183. Esposito, E.; Cortesi, R. and Nastruzzi, C. (1996) Gelatin Microspheres: influence of preparation parameters and thermal treatment on chemico-physical and biopharmaceutical properties. Biomaterials 17: 2009–2020.

    Article  CAS  Google Scholar 

  184. Leucuta, S.E.; Ponchell, G. and Duchene, D. (1997) Dynamic swelling behaviour of gelatin/poly(acrylic acid) bioadhesive microspheres loaded with oxprenolol. J. Microencapsulation 14: 201–510.

    Google Scholar 

  185. Leucuta, S.E.; Ponchell, G. and Duchene, D. (1997) Oxprenolol relase from bioadhesive gelatin/poly(acrylic acid) microspheres. J. Microencapsulation 14: 511–522.

    Article  CAS  Google Scholar 

  186. Cortesi, R.; Nastruzzi, C. and Davis, S.S. (1998) Sugar cross-linked gelatin for controlled release microspheres and disks. Biomaterials 1998: 1641–1649.

    Article  Google Scholar 

  187. Shu, X.Z. and Zhu, K.J. (2001) Chitosan/gelatin microspheres prepared by modified emulsification and ionotropic gelation. J. Microencapsulation 18: 237–245.

    Article  CAS  Google Scholar 

  188. Cremers, H.F.M. (1993) Biodegradable ion-exchange microspheres for site specific delivery of adriamycin, Ph.D. Thesis, Department of Chemical Technology, University of Twente, Enschede, The Netherlands.

    Google Scholar 

  189. Jong, A. de (1994) Albumin microspheres: Preparation, characteristics and applications. Graduation thesis, University of Utrecht, The Netherlands.

    Google Scholar 

  190. Gallo, J.M.; Hung, C.T. and Perrier, D.G. (1984) Analysis of albumin microsphere preparation. Int. J. Phann. 22: 63–74.

    Google Scholar 

  191. Pasqualine, R.; Plassio, G. and Sosi, S. (1969) The preparation of albumin microspheres. J. Biol. Nucl. Med. 13: 80–84.

    Google Scholar 

  192. Scheffel, U.; Buck, A.; Rhodes, T.K. and Wagner, H.N. (1972) Albumin microspheres for study of the reticuloendothelial system. J. Nucl. Med. 13: 498–503.

    Google Scholar 

  193. Rubino, O.P.; Kowalsky, R. and Swarbrick, J. (1993) Albumin microsphers as a drug delivery system: relation among turbidity ratio, degree of cross-linking and drug release. Pharm. Res. 10: 1059–1065.

    Google Scholar 

  194. Burger, J.J.; Tomlinson, E.; Mulder, E.M.A. and McVie, J.G. (1985) Albumin microspheres for intraarterial tumour targeting. 1. Pharmaceutical aspects. Int. J. Pharm. 23: 333–344.

    Google Scholar 

  195. Torrado, J.J.; Ilium, L.; Cadorniga, R. and Davis, S.S. (1990) Egg albumin microspheres containing paracetamol for oral administration. II. In vivo investigation. J. Microencapsulation 7 (4): 471–477.

    Article  CAS  Google Scholar 

  196. Torrado, J.J.; Ilium, L.; Cadorniga, R. and Davis, S.S. (1990) Egg albumin microspheres containing paracetamol for oral administration.I. In vitro characterization. J. Microencapsulation 7 (4): 463–470.

    Article  CAS  Google Scholar 

  197. Orienti, I.; Coppola, A.; Gianasi, E. and Zecchi, V. (1994) Influence of physico-chemical parameters on the release of hydrocortisone acetate from albumin microspheres. J. Contr. Rel. 31: 61–71.

    Google Scholar 

  198. Kramer, P.A. (1974) Albumin microspheres as vehicles for achieving specificity in drug delivery. J. Pharm. Sci. 63: 1646–1647.

    Google Scholar 

  199. Heelan, B.A. and Corrigan, 0.1. (1998) Preparation and evaluation of microspheres prepard from whey protein isolate. J. Microencaps. 15: 93–105.

    Article  CAS  Google Scholar 

  200. Lee, S.J. and Rosenberg, M. (1999) Preparation and properties of glutaraldehyde crosslinked whey protein-based microcapsules containing theophylline. J. Control. Rel. 61: 123–136.

    Google Scholar 

  201. Lee, S.J. and Rosenberg, M. (2000) Whey protein microcapsules prepared by double emulsification and heat gelation. Lebensm. Wiss. Technol 23: 80–88.

    Google Scholar 

  202. Lee, S.J. and Rosenberg, M. (2000) Microencapsulation of theophylline in whey proteins: Effects of core-to-wall ratio. Int. J. Pharm. 205: 147–158.

    Google Scholar 

  203. Spillane, S.M.; Vingerhoeds, M.H.; van der Bent, A. and van Amerongen, A. (2000) Antimicrobial effect of nisin-containing microspheres. In: Proceedings of the 27th Int. Symp. Control. Rel. Bioact. Mat., CRS Inc.; pp. 1373–1374.

    Google Scholar 

  204. Vingerhoeds, M.H. and Harmsen, P.F.H. (2000) Proteins: versatile materials for microencapsulation. In: Proceedings of the COST 840 meeting ( Bioencapsulation innovation and technologies) “Structure-function properties of biopolymers in relation to bioencapsulation”, Helsinki (Finland); pp. 1–4.

    Google Scholar 

  205. Langelaan, H.C.; Litjens, M.J.J.; Poortier, E.; Harmsen, P.F.H. and Vingerhoeds, M.H. (2001) Microencapsulation for food applications using supercritical fluid technology. In: Proceedings of the 13th Int. Symp. Microencapsulation, Angers (France); C-VI.

    Google Scholar 

  206. de Wolf, F.A. and Brett, G.M. (2000) Ligand-binding proteins: their potential for application in systems for controlled delivery and uptake of ligands. Pharmaco. Rev. 52: 207–236.

    Google Scholar 

  207. Muresan, S.; Vingerhoeds, M.H.; van der Bent, A. and de Wolf, F.A. (1998) Fluorescence and equilibrium analysis studies on the binding of small ligands to beta-lactoglobulin. In: Proceedings of the 25th Int. Symp. Control. Rel. Bioact. Mat., Las Vegas, USA, CRS Inc.; pp. 332–333.

    Google Scholar 

  208. Brownlow, S.; Morais Cabral, J.H.; Cooper, R.; Flower, D.R.; Yewdall, S.J.; Polikarpov, I.; North, A.C. and Sawyer, L. (1997) Bovine beta-lactoglobulin at 1.8 A resolution-still an enigmatic lipocalin. Structure 5: 481–495.

    Article  CAS  Google Scholar 

  209. Oliveira, K.M.; Valente-Mesquita, V.L.; Botelho, M.M.; Sawyer, L.; Ferreira, S.T. and Polikarpov, I. (2001) Crystal structures of bovine beta-lactoglobulin in the orthorhombic space group C222(1). Structural differences between genetic variants A and B and features of the Tanford transition. Eur. J. Biochem. 268: 477–483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vingerhoeds, M.H., Harmsen, P.F.H. (2004). Proteins: Versatile Materials for Encapsulation. In: Nedović, V., Willaert, R. (eds) Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1638-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6534-6

  • Online ISBN: 978-94-017-1638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics