Skip to main content

Modelling Immobilised-Cell Processes

Application to integrated nitrogen removal with co-immobilised microorganisms

  • Chapter
Fundamentals of Cell Immobilisation Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 8A))

Abstract

Mechanistic models are proven, valuable tools for both the understanding and for the design, control and scale-up of complex systems, and are as well essential for the prediction of the responses of a given system to changes in environmental and operating conditions. Also, they give quite much insight into the mechanisms underlying the processes under consideration. This insight is extraordinarily important in the sense that it allows us to understand into great detail the basic phenomena regulating the processes involved, and gives us a powerful tool to control, modify or extend them to other systems in which these or similar phenomena play a role. Finally, they provide us with a solid knowledge framework in which information regarding complex interactions can be organised and systematised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kurosawa, H. and Tanaka, H. (1990) Advances in immobilised cell culture: development of a co-immobilised mixed culture system of aerobic and anaerobic micro-organisms. Process Biochem. 25: 189196.

    Google Scholar 

  2. Bryers, J.D. and Banks, M.K. (1990) Assessment of biofilm ecodynamics: In: de Bont, J.; Visser, J.; Matiasson, M. and Tramper, J. (Eds.), Physiology of Immobilised cells. Elsevier Science Publishers, Amsterdam, The Netherlands, pp. 49–61.

    Google Scholar 

  3. Wijffels, R.H.; Eekhof, M.R.; Van den Heuvel, J.C. and Tramper, J. (1995) Pseudo-steady-state oxygen concentration profiles in an agar slab containing growing Nitrobacter agilis. J. Ferment. Bioeng. 2: 167170.

    Google Scholar 

  4. Martins dos Santos, V.A.P.; Tramper, J. and Wijffels. R.H. (1996) The magic bead concept: an integrated approach for nitrogen removal with co-immobilised microorganisms. Appl. Microbiol. Biotechnol. 45: 447–453.

    Google Scholar 

  5. Martins dos Santos, V.A.P.; Marchai, L.; Tramper, J. and Wijffels, R.H. (1996) Modelling and evaluation of an integrated nitrogen removal system with co-immobilised microorganisms. Biotechnol. Prog. 12: 163–171.

    Google Scholar 

  6. Martins dos Santos, V.A.P.; Tramper, J. and Wijffels, R.H. (1993). Simultaneous nitrification and denitrification using immobilised micro-organisms. Biomat., Art. Cells and Immob Biotech. 21: 317–322.

    Google Scholar 

  7. Hunik, J.H.; Tramper, J. and Wijffels, R.H. (1994) A strategy to scale-up nitrification processes with immobilised nitrifying cells. Bioprocess Eng. 11: 73–82.

    Article  CAS  Google Scholar 

  8. Sweere, A.P.J.; Luyben, K.Ch.A.M. and Kossen, N.W.F. (1987) Regine analysis and scale down: tools to investigate the performance of bioreactors. Enzyme Microbiol. Technol. 9: 386–398.

    Google Scholar 

  9. de Gooijer, C.D.; Wijffels, R.H. and Tramper, J. (1991) Growth and substrate consumption of Nitrobacter agilis cells immobilised in carrageenan: part 1. Dynamic modeling. Biotechnol. Bioeng. 38: 224–231.

    Google Scholar 

  10. Wijffels, R.H.; Schepers, A.W.; Smit, M.; de Gooijer, C.D.; Tramper, J. (1994) Effect of initial biomass concentration on the growth of immobilised Nitrosomonas Europaea. Appl. Microbiol. Biotechnol. 42: 153–157.

    Google Scholar 

  11. Beefink, H.H.; van der Heijden, R.T.J.M. and Heijnen, J.J. (1990) Maintenance requirements: energy supply from simultaneous respiration and substrate consumption. FEMS Microbiol. Ecol. 73: 203–210.

    Google Scholar 

  12. Hunik, J.H.; Bos, C.G.; Van Den Hoogen, P.; De Gooijer, C.D. and Tramper, J. (1994) Co-immobilised Nitrosomonas euroapaea and Nitrobacter agilis cells: validation of a dynamic model for simultaneous substrate conversion and growth in x-carrageenan gel beads. Biotechnol. Bioeng. 43: 1153–1163.

    Google Scholar 

  13. Wijffels, R.H.; De Gooijer, C.D.; Kortekaas, S. and Tramper, J. (1991) Growth and substrate consumption of Nitrobacter agilis cells immobilised in k-carrageenan. Part 2: Model evaluation. Biotechnol. Bioeng. 38: 232–240.

    Google Scholar 

  14. Wijffels, R.H.; de Gooijer, C.D.; Schepers, A.W.; Beuling, E.E.; Mallée, L.F. and Tramper, J. (1996) Dynamic modeling of immobilised Nitrosomonas europaea: implementation of diffusion limitation over expanding micro-colonies. Enzyme Microb. Technol. 17: 462–471.

    Google Scholar 

  15. Willaert, R.G.; Baron, G.V. and De Backer, L. (1996) Immobilised living cell systems. John Wiley and Sons, New York, USA.

    Google Scholar 

  16. Ryder, D.N. and Sinclair, C.G. (1972) Model for the growth of aerobic micro-organisms under oxygen limiting conditions. Biotechnol. Bioeng. 14: 787–798.

    Google Scholar 

  17. Bader, F.G. (1978) Analysis of double-substrate limited growth. Biotechnol. Bioeng. 20: 183–202.

    Google Scholar 

  18. Mankad, T and Nauman, E.B. (1992) Modeling of microbial growth under dual limitations. Chem. Eng. J. 48: B9 - B11.

    Article  CAS  Google Scholar 

  19. Robertson, L.A. and Kuenen, J.G. (1990) Combined heterotrophic nitrification and aerobic denitrification in Thiosphera pantotropha and other bacteria. Antonie van Leeuwenhoek 57: 139–152.

    Article  CAS  Google Scholar 

  20. Robertson, L.A.; Corneline, R.; De Vos, P.; Hadioetomo, R. and Kuenen, J.G. (1989) Aerobic denitrification in various heterotrophic nitrifiers. Antonie van Leeuwenhoek 56: 289–299.

    Article  CAS  Google Scholar 

  21. Hunik, J.H.; Tramper, J. and Meijer, H.J.G. (1992) Kinetics of Nitrosomonas europaea at extreme substrate, product and salt concentrations. Appl. Microbiol. Biotechnol. 37: 802–807.

    Google Scholar 

  22. Wang, J.H.; Baltzis, B.C. and Lewandowski, G.A. (1995) Fundamental denitrification studies with Pseudomonas denitrificans. Biotechnol. Bioeng. 47: 26–41.

    Google Scholar 

  23. Almeida, J.S.; Reis, M.A.M. and Carrondo, M.J.T. (1995) Competition between nitrate and nitrite reduction in denitrification by Pseudomonasfluorescens. Biotechnol. Bioeng. 46: 476–484.

    Google Scholar 

  24. Press, W.H. (1989) Numerical recipes in Pascal: the art of scientific computing. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  25. Flora, J.RV.; Suidan, M.T.; Biswas, P. and Sayles, G.D. (1993) Modeling substrate transport into biofilms• role of multiple ions and pH effects. J. Environm. Eng. 119: 908–930.

    Google Scholar 

  26. Lens, P.; de Bee,r D.; Cronenberg, C.; Ottengraf, S. and Verstaete, W. (1995) The use of microsensors to determine population distributions in UASB aggregates. Wat. Sci. Technol. 31: 273–280.

    Google Scholar 

  27. Cronenberg, C.C.H. and Van den Heuvel, J.C. (1991) Determination of glucose diffusion coefficients in biofilms with microelectrodes. Biosens. Bioelectron. 6: 255–262.

    Google Scholar 

  28. Flora, J.RV.; Suidan, M.T.; Biswas, P. and Sayles, G.D. (1995) A modeling study of ananerobic biofilm systems: I. Detailed biofilm modeling. Biotechnol Bioeng. 46: 43–53.

    Google Scholar 

  29. Bailey, J.E. and 011is, D.F. (1992) Biochemical Engineering Fundamentals. 2“ ed., McGraw-Hill, New York.

    Google Scholar 

  30. Quinlan, A.V. (1984) Prediction of the optimum pH for ammonia-N oxidation by Nitrosomonas europaea in well-aerated natural and domestic-waste waters. Wat. Res. 18: 561–566.

    Google Scholar 

  31. Antoniou, P.; Hamilton, J.; Koopman, B.; Jain, R.; Holloway, B.; Lyberatos and Svoronos, S.A. (1990) Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Wat. Res. 24: 97–101.

    Google Scholar 

  32. Laudelout, H.; Lambert, R. and Pham, M.L. (1976) Influence du pH et la pression partielle d’oxygene sur la nitrification. Ann. Microbiol. ( Inst. Pasteur ) 127A: 367–382.

    Google Scholar 

  33. Suzuki, 1.; Dular, U. and Kwok, S.C. (1974) Ammonia or ammonium as substrate for oxidation by Nitrosomonas europaea cells and extracts. J. Bacteriol. 120: 556–558

    CAS  Google Scholar 

  34. Thomsen, J.K.; Geest, T. and Cox, R.P. (1994) Mass spectrometric sudies of the effect of pH on the accumulation of intermediates in denitrification by Paracoccus denitrificans. Appl. Environm. Microbiol. 60: 536–541.

    Google Scholar 

  35. Wiesmann, U. (1994) Biological nitrogen removal from wastewaters. In: Fletcher, A. (Ed.), Advances in Biochemical Engineering and Biotechnology. Springer-Verlag, 51: 113–154.

    Google Scholar 

  36. Sheintuch, M.; Tartakovski, B.; Narkis, N. and Rebhun, M (1995) Substrate inhibition in a continuous nitrification process. Wat. Res. 29: 953–963.

    Google Scholar 

  37. Dombrowski, T. (1991) Kinetik der Nitrifikation und Reaktionstechnik der Stickstoffeliminierung aus hochbelasteten Abwässern. VDI-Fortschrittsberichte, Reihe 15: Umwelttechnik no. 87.

    Google Scholar 

  38. Anthonissen, A.C.; Loehr, R.C.; Prakasmam, T.B.S. and Srinath, E.G. (1976) Inhibition of nitrification by ammonia and nitrous acid. J. WPCF 48: 835–852.

    Google Scholar 

  39. Prosser, J.I. (1989) Autotrophic nitrification in bacteria. Adv. Microbiol. Physiol. 30: 125–181.

    Google Scholar 

  40. Van Niel, E.W.J.; Braber, K.J.; Robertson, L.A. and Kuenen, J.G. (1992) Heterotrophic nitrification and denitrification in Alcaligenes faecalis strain TUD. Antonie van Leeuwenhoek. 62: 231–237.

    Article  Google Scholar 

  41. Robertson, L.A. and Kuenen, J.G. (1990) Combined heterotrophic nitrification and aerobic denitrification in Thiosphera pantotropha and other bacteria. Antonie van Leeuwenhoek 57: 139–152.

    Article  CAS  Google Scholar 

  42. van Niel, E.W.J.; Arts, P.A.M.; Wesselink, B.J.; Robertson, L.A. and Kuenen, J.G. (1993) Competition between heterotrophic and autotrophic nitrifiers for ammonia in chemostat cultures. FEMS Microbiol. Ecol. 102: 109–118.

    Google Scholar 

  43. Koike, I. and Hattori,A. (1975) Growth yield of a denitrifying bacterium, Pseudomonas denitrificans, under aerobic and denitrifying conditions. J. Gen. Microbiol. 88: 1–10.

    Google Scholar 

  44. Zumft, W.G. (1991) The denitrifying prokaryotes. In: Balows, A.; Truper, H.; Dworkin, M; Harder, W. and Schleifer, K. (Eds), The prokaryotes. Springer-Verlag, New York, USA, pp. 555–556.

    Google Scholar 

  45. Gujer, W. and Boller, M. (1989) A Mathematical model for rotating biological contactors. In: Proc. EWPCA Conference on Technical advances in biofilm reactors, Nice, France; pp. 69–89.

    Google Scholar 

  46. Hulst, A.C.; Hens, H.J.H.; Buitelaar, R.M. and Tramper, J. (1989) Determination of the effective diffusion coefficient of oxygen in gel materials in relation to concentration. Biotechnol. Techn. 3: 199204.

    Google Scholar 

  47. Wesselingh, J.A. and Krishna, R. (1990) Mass Transfer. Ellis Harwood, Chichester, UK.

    Google Scholar 

  48. Beuling, E.E.; Van den Heuvel, J.C. and Ottengraf, S.P.P. (1996) Determination of biofilm diffusion coefficients using microelectrodes. In: Wijffels, R.H.; Buitelaar, R.; Wessels, H.; Tramper, J. and Bucke, C. (Eds.), Immobilised Cells: Basics and Applications. Elsevier Science, Amsterdam, The Netherlands, pp. 31–38.

    Google Scholar 

  49. Westrin, BA. (1991) Diffusion measurements in gels: a methodological study. PhD dissertation, Lund University, Lund, Sweden.

    Google Scholar 

  50. Lide, D.R. (Ed.) (1992) Handbook of Chemistry and Physics. 73rd edition. CRC Press, Boca Raton, U.S.A.

    Google Scholar 

  51. Mackie, J.S and Meares, P. (1955) The diffusion of electrolytes in a cation-exchange resin membrane. Theoretical. Proc. Roy. Soc. London. A232: 498–509.

    Google Scholar 

  52. Wijffels, R.H. and Tramper, J. (1992) Nitrification by immobilised cells. Enzyme Microb. Technol. 17: 482–492.

    Google Scholar 

  53. Hooijmans, C.M.; Gerats, S.G.M., van Niel, E.W.J.; Robertson, R.A.; Heijnen, J.J. and Luyben, K. Ch.A.M. (1990) Determination of growth and coupled nitrifcation/dewnitrification by immobilised Thiophaera pantotropha using measurements and modeling oxygen profiles. Biotechnol. Bioeng. 36: 931–939.

    Google Scholar 

  54. Hooijmans, C.M.; Gerats, S.G.M.; Potter, J.J.M. and Luyben, K.Ch.A.M. (1990) Experimental determination of mass transfer boundary layer around a spherical biocatalyst particle. Biochem. Eng. J. 44: B41.

    Google Scholar 

  55. de Beer, D.; van den Heuvel, J.C. and Ottengraaf, S.P.P. (1993) Microelectrode measurements of activity distribution in nitrifying bacterial aggregates. Appl. Environ. Microbiol. 59: 573–579.

    Google Scholar 

  56. Sherwood, T.K.A.; Pigford, R.L. and Wilke, C.R. (1975) Mass transfer. McGraw-Hill Book Company, London, UK.

    Google Scholar 

  57. Martins dos Santos, V.A.P.; Verschuren, P.; van den Heuvel, H.; Tramper, J. and Wijffels, R.H. Substrate and product profiles across double-layer gel beads: modelling and experimental evaluation. Submitted.

    Google Scholar 

  58. Riemer, M. and Harremoes, P. (1978) Multi-component diffusion in denitrifying biofilms Prog. Wat. Technol. (presently Wat. Sci. Technol. ) 10: 149–163.

    Google Scholar 

  59. Arvin, E. and Kristensen, G.H. (1982) Effect of denitrification on the pH in biofilms Wat. Sci. Technol. 14: 833–848.

    Google Scholar 

  60. Zhang, T.C. and Bishop, P. (1996) Evaluation of substrate and pH effects in a nitrifying biofilm. Wat. Environm. Res. 68: 1107–1115.

    Google Scholar 

  61. Zhang, TC; Fu, Y. and Bishop, P. (1995) Competition for substrate and space in biofilms. Wat. Environm. Res. 67: 992–1003.

    Google Scholar 

  62. Szwerinski, H.; Arvin, E. and Harremoes, P. (1986) pH decrease in nitrifying biofilms Wat. Res. 20: 971–976.

    Google Scholar 

  63. Siegrist, H. and Gujer, W. (1987) Demonstration of mass transfer and pH effects in a nitrifying biotiilm. Wat. Res. 21: 1481–1487.

    Google Scholar 

  64. Kokufuta E; Yukishige M and Nakamura 1. (1987) Coimmobilisation of Nitrosomonas and Paracoccus denitrificans cells polyelectrolyte complex-stabilized calcium alginate gel. J. Ferment. Bioeng. 6: 659664.

    Google Scholar 

  65. Kokufuta, E.; Shimohashi, M. and Nakamura, I. (1988) Simultaneously occurring nitrification and denitrification under oxygen gradient by polyelectrolyte complex-coimmobilised Nitrosomonas and Paracoccus denitrificans cells. Biotechnol. Bioeng. 31: 382–384.

    Google Scholar 

  66. Tartakovsky, B.; Kotlar, E.; Sheintuch, M. (1996) Coupled nitrification-denitritiication processes in a mixed culture of co-immobilised cells:Analysis and experiments. Chem. Eng. Sci. 51: 2327–2336.

    Google Scholar 

  67. van Benthum, W.A.J.; van Loosdrecht, M.C.M. and Heijnen, J.J. (1997) Control of heterotrophic layer formation on nitrifying biofilms in a biofilm airlift suspension reactor. Biotechnol. Bioeng 53 . 397–405.

    Google Scholar 

  68. Meyerhoff, J.; John, G.; Bellgardt, K.H. and Schugerl, K. (1997) Characterization and modelling of coimmobilised aerobic/anaerobic mixed cultures Chem. Eng Sci. 52 (14): 2313–2329.

    Article  CAS  Google Scholar 

  69. Tartakovsky, B.; Guiot, S.R.; Sheintuch, M. (1998) Modeling and analysis of co-immobilised aerobic/anaerobic mixed cultures. Biotechnol. Progr. 14: 672–679.

    Google Scholar 

  70. Peng, C.A. and Bly, M.J. (1998) Analysis of xenobiotic bioremediation in a co-immobilised mixed culture system. Biochem. Eng. J. 1: 63–75.

    Google Scholar 

  71. Hellendoorn, L.; Ottengraaf, S.P.; Pennings, J.A.M.M.; van den Heuvel, J.C.; Martins dos Santos, V.A.P. and Wijffels, R.H. (1999) Kinetic behaviour of and performance of a co-immobilised system of amyloglucosidase and Zymomonas mobilis. Biotechnol. Bioeng. 63: 694–704.

    Google Scholar 

  72. Martins dos Santos, V.A.P.; Jacobs, M; Tramper, J.; Jetten, M.; Kuenen, G. and Wijffels, R.H. simultaneous autotrophic nitrification and anaerobic ammonium oxidation with co-immobilised microorganisms. Appl. Environm. Microbiol., submitted.

    Google Scholar 

  73. Martins dos Santos, V.A.P.; Verschuren, P.; van den Heuvel, H.; Tramper, J., and Wijffels, R.H. pH effects on coupled nitrification and denitrification measured by specific microelectrodes. Biotechnol. Bioeng., submitted.

    Google Scholar 

  74. Goodall, J.L. and Peretti, S.W. (1998) Dynamic modeling of meta-and para-nitrobenzoate metabolism by a mixed co-immobilised culture of Comamonas spp. JS46 and JS47. Biotechnol Bioeng. 59: 507–16.

    Article  CAS  Google Scholar 

  75. Goodall, J.L.; Thomas, S.M.; Spain, J.C. and Peretti, S.W. (1998) Operation of mixed-culture immobilised cell reactors for the metabolism of meta-and para-nitrobenzoate by Comamonas sp. JS46 and Comamonas sp. JS47. Biotechnol. Bioeng. 59: 21–27.

    Google Scholar 

  76. Tsien, R.Y. and Rink, T.J. (1980) Neutral carrier ion-selective microelectrodes for the measurement of intacellular free calcium. Biochim. Biophys. Acta 599: 623–628.

    Google Scholar 

  77. Schaller, U.; Bakker, E.; Spichiger, U.E. and Pretsch, E. (1994) Nitrite-selective microelectrodes, Talanta, 41: 1001–1005.

    Article  CAS  Google Scholar 

  78. de Beer, D.; Schramm, A.; Santegoeds, C.M. and Khul, M. (1997) A nitrite microsensor for profiling environmental biofilms Appl. Environm. Microbiol. 63: 973–977.

    Google Scholar 

  79. Revsbech, N.P. and Ward, D.M. (1980) Oxygen microelectrode that is insensitive to medium chemical composition: use in an acid microbial mat dominated by Cyanidium caldarium. Appl. Environ. Microbiol. 45: 755–759.

    Google Scholar 

  80. Axelsson, A.; Westrin, B.; and Loyd D. (1991) Application of the diffusion cell for the measurement of diffusion in cells. Chem. Eng. Sci. 46: 913–915

    Google Scholar 

  81. Bird, R.B.; Stewart, W.E. and Lightfoot, E.N. (1960) Transport phenomena. Wiley International Edition, New York, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Martins Dos Santos, V.A.P., Tramper, J., Wijffels, R.H. (2004). Modelling Immobilised-Cell Processes. In: Nedović, V., Willaert, R. (eds) Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1638-3_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6534-6

  • Online ISBN: 978-94-017-1638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics