Skip to main content

Applications of NMR Spectroscopy and Imaging to the Study of Immobilised Cell Physiology

  • Chapter
Fundamentals of Cell Immobilisation Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 8A))

Abstract

The use of NMR spectroscopy and imaging in biology and medicine has grown dramatically over the last decade. The popularity of these magnetic resonance methods stems directly from the fact that they are non-invasive and can provide extremely detailed information about the chemical environment of atomic nuclei. Dynamic metabolic phenomena can be studied in real time, without perturbing normal cellular function. The biggest limitation in using NMR to study living systems is that it is a relatively insensitive technique. For this reason, immobilisation methods are generally used to culture cells at high densities for NMR studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A. (1983). The Principles of Nuclear Magnetism. Oxford University Press, Oxford, UK.

    Google Scholar 

  2. Ernst, R. R.; Bodenhausen, G.; and Wokaun, W (1990) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, Oxford, UK.

    Google Scholar 

  3. Derome, A. E. (1987). Modern NMR techniques for chemistry research. Pergamon Press, New York.

    Google Scholar 

  4. Sanders, J. K. M. and Hunter, B. K. (1993) Modern NMR Spectroscopy: A Guide for Chemists. Oxford University Press, Oxford, UK.

    Google Scholar 

  5. Callaghan, P. T. (1997) Principles of nuclear magnetic resonance microscopy. Oxford University Press, Oxford, U.K.

    Google Scholar 

  6. Hashemi, R. H. and Bradley, W. G. (1997) MRI: The Basics. Williams & Wilkins, Baltimore. NMR spectroscopy and imaging to the study of immobilised cell physiology

    Google Scholar 

  7. Heath, C. A.; Belfort, G.; Hammer, B. E.; Mirer, S. D. and Pimbley, J. M. (1990) Magnetic resonance imaging and modeling of flow in hollow-fiber bioreactors. AIChE J. 36: 547–558.

    Article  CAS  Google Scholar 

  8. Hammer, B. E.; Heath, C. A.; Mirer, S. D. and Belfort, G. (1990) Quantitative flow measurements in bioreactors by nuclear magnetic resonance imaging. Bio/Technol. 8: 327–330.

    Article  CAS  Google Scholar 

  9. Brindle, K. M. (1998) Investigating the performance of intensive mammalian cell bioreactor systems using magnetic resonance imaging and spectroscopy. Biotechnol. Genet. Eng. Rev. 15: 499–520.

    Google Scholar 

  10. Thelwall, P. E.; Neves, A. A. and Brindle, K. M. (2001) Measurement of bioreactor perfusion using dynamic contrast agent-enhanced magnetic resonance imaging. Biotechnol. Bioeng. 75: 682–690.

    Google Scholar 

  11. Constantinidis, I.; Long, R.; Jr., Weber, C.; Safley, S.; and Sambanis, A. (2001) Non-Invasive monitoring of a bioartitiicial pancreas in vitro and in vivo. Ann. NY Acad. Sci. 944: 83–95.

    Google Scholar 

  12. Callies, R.; Jackson, M. E.; and Brindle, K. M. (1994) Measurements of the growth and distribution of mammalian cells in a hollow-fiber bioreactor using nuclear magnetic resonance imaging. Bio/Technol. 12: 75–78.

    Article  CAS  Google Scholar 

  13. van Zijl, P. C.; Moonen, C. T.; Faustino, P.; Pekar, J.; Kaplan, O. and Cohen, J. S. (1991) Complete separation of intracellular and extracellular information in NMR spectra of perfused cells by diffusion-weighted spectroscopy. Proc. Nat. Acad. Sci. USA 88: 3228–3232.

    Google Scholar 

  14. Ruiz-Cabello, J. and Cohen, J. S. (1992) Phospholipid metabolites as indicators of cancer cell function. NMR Biomed. 5: 226–233.

    Article  CAS  Google Scholar 

  15. Shulman, R. G.; Brown, T. R.; Ugurbil, K.; Ogawa, S., Cohen, S. M. and den Hollander, J. A. (1979) Cellular applications of 31P and 13C nuclear magnetic resonance. Science 205: 160–166.

    Article  CAS  Google Scholar 

  16. Chance, E. M.; Seeholzer, S. H.; Kobayashi, K.; and Williamson, J. R. (1983) Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. J. Biol. Chem. 258: 13785–13794.

    Google Scholar 

  17. Gupta, R. K. (1987) NMR spectroscopy of cells and organisms. (Vol. 2 ) CRC Press, Boca Raton, FL.

    Google Scholar 

  18. Reddy, R.; Shinnar, M.; Wang, Z. and Leigh, J. S. (1994) Multiple-quantum filters of spin-3/2 with pulses of arbitrary flip angle. J. Magn. Res. Series B 104: 148–152.

    Google Scholar 

  19. Boulanger, Y.; and Vinay, P. (1989) Nuclear magnetic resonance monitoring of sodium in biological tissues. Can. J. Physiol. Pharmacol. 67: 820–828.

    Google Scholar 

  20. Street, J. C.; Delort, A. M.; Braddock, P. S. and Brindle, K. M. (1993) A 1H/15N N.M.R. study of nitrogen metabolism in cultured mammalian cells. Biochem. J. 291: 485–492.

    Google Scholar 

  21. Jones, J. G.; Solomon, M. A.; Cole, S. M.; Sherry, A. D. and Malloy, C. R. (2001) An integrated 2H and 13C NMR study of gluconeogenesis and TCA cycle flux in humans. Amer. J. Physiol. Endocrinol. Metab. 281: E848 - E856.

    CAS  Google Scholar 

  22. Charagundla, S. R.; Duvvuri, U.; Noyszewski, E. A.; Dandora, R.; Stolpen, A. H.; Leigh, J. S. and Reddy, R. (2000) 17O-decoupled 1H spectroscopy and imaging with a surface coil: STEAM decoupling. J. Magn. Res. 143: 39–44.

    Google Scholar 

  23. Ronen, I.; Merkle, H.; Ugurbil, K. and Navon, G. (1998) Imaging of H2120 distribution in the brain of a live rat by using proton-detected ’ O MRI. Proc. Natl. Acad. Sci. USA 95: 12934–12939.

    Google Scholar 

  24. Presant, C. A.; Wolf, W.; Albright, M. J.; Servis, K. L.; Ring, R.; Atkinson, D.; Ong, R. L.; Wiseman, C.; King, M. and Blayney, D. (1990) Human tumor fluorouracil trapping: clinical correlations of in vivo 19F nuclear magnetic resonance spectroscopy pharmacokinetics. J. Clin. Oncol. 8: 1868–1873.

    Google Scholar 

  25. Prior, M. J.; Maxwell, R. J. and Griffiths, J. R. (1990) In vivo 19F NMR spectroscopy of the antimetabolite 5-fluorouracil and its analogues. An assessment of drug metabolism. Biochem. Pharmacol. 39: 857–863.

    Google Scholar 

  26. McGovern, K. A.; Schoeniger, J. S.; Wehrle, J. P.; Ng, C. E. and Glickson, J. D. (1993) Gel-entrapment of perfluorocarbons: a fluorine-19 NMR spectroscopic method for monitoring oxygen concentration in cell perfusion systems. Magn. Reson. Med. 29: 196–204.

    Google Scholar 

  27. Williams, S N O; Callies, R. M., and Brindle, K. M. (1997) Mapping of oxygen tension and cell distribution in a hollow-fiber bioreactor using magnetic resonance imaging. Biotechnol. Bioeng. 56: 5661.

    Google Scholar 

  28. Pilatus, U.; Aboagye, E.; Artemov, D.; Mori, N.; Ackerstaff, E. and Bhujwalla, Z. M. (2001) Real-time measurements of cellular oxygen consumption, pH, and energy metabolism using nuclear magnetic resonance spectroscopy. Magn. Reson. Med. 45: 749–755.

    Google Scholar 

  29. He, S.; Mason, R. P.; Hunjan, S.; Mehta, V. D.; Arora, V.; Katipally, R.; Kulkarni, P. V. and Antich, P. P. (1998) Development of novel 19F NMR pH indicators: synthesis and evaluation of a series of fluorinated vitamin B6 analogues. Bioorgan. Med. Chem. 6: 1631–1639.

    Google Scholar 

  30. Komoroski, R. A. (2000) Applications of 7Li NMR in biomedicine. Magn. Reson. Imag 18. 103–116.

    Google Scholar 

  31. Soares, J. C.; Boada, F. and Keshavan, M. S. (2000) Brain lithium measurements with 7Li magnetic resonance spectroscopy (MRS): a literature review. Eur. Neuropsychopharmacol. 10: 151–158.

    Google Scholar 

  32. Nikolakopoulos J.; Zachariah, C.; de Freitas, D.M.; Stubbs, E.B.; Ramasamy, R.; Castro, G.M.C.A. and Geraldes, C.F.G.C. (1998) ‘Li nuclear magnetic resonance study for the determination of Li+ properties in neuroblastoma SH-SY5Y cells. J. Neurochem. 71: 1676–1684.

    Google Scholar 

  33. Le Bihan, D. (1995) Diffusion and Perfusion Magnetic Resonance Imaging. Applications to Functional MRI. Raven Press, New York.

    Google Scholar 

  34. Hoult, D. 1. and Chen, C.-N. (1989) Biomedical magnetic resonance technology. New York: Bristol.

    Google Scholar 

  35. Murphy, M. K.; Fernandez, E. J. and Clark, D. S. (1989) A comparison of three radiofrequency coils for NMR studies of conductive samples. Magn. Reson. Med. 12: 382–389.

    Google Scholar 

  36. Fernandez, E. J.; Mancuso, A.; Murphy, M. K.; Blanch, H. W. and Clark, D. S. (1990) Nuclear magnetic resonance methods for observing the intracellular environment of mammalian cells. Ann. NY Acad. Sci. 589: 458–475.

    Google Scholar 

  37. Foxall, D. L.; Cohen, J. S. and Mitchell, J. B. (1984) Continuous perfusion of mammalian cells embedded in agarose gel threads. Exp. Cell Res. 154: 521–529.

    Google Scholar 

  38. Neeman, M.; Rushkin, E.; Kaye, A. M. and Degani, H. (1987) Phosphorus-31 NMR studies of phosphate transfer rates in T47D human breast cancer cells. Biochim. Biophys. Acta 930: 179–192.

    Google Scholar 

  39. Kaplan, O. and Cohen, J. S. (1994) Metabolism of breast cancer cells as revealed by non-invasive magnetic resonance spectroscopy studies. Breast Canc. Res. Treat. 31: 285–299.

    Google Scholar 

  40. Lundberg, P.; Roy, S. and Kuchel, P. W. (1994) Immobilization methods for NMR studies of cellular metabolism-a practical guide. Immunomethods 4: 163–178.

    Article  CAS  Google Scholar 

  41. Farghali, H.; Rossaro, L.; Gavaler, J. S.; Van Thiel, D. H.; Dowd, S. R.; Williams, D. S. and Ho, C. (1992) 31P-NMR spectroscopy of perfused rat hepatocytes immobilized in agarose threads: application to chemical-induced hepatotoxicity. Biochim. Biophys. Acta 1139: 105–114.

    Google Scholar 

  42. Lyon, R. C., Faustino, P. J. and Cohen, J. S. (1986) A perfusion technique for 73C NMR studies of the metabolism of 13C-labeled substrates by mammalian cells. Magn. Reson. Med. 3: 663–672.

    Google Scholar 

  43. Alves, P. M.; Flogel, U.; Brand, A.; Leibfritz, D.; Carrondo, M. J.; Santos, H. and Sonnewald, U. (1996) Immobilization of primary astrocytes and neurons for online monitoring of biochemical processes by NMR. Devel. Neurosci. 18: 478–483.

    Google Scholar 

  44. Daly, P. F.; Lyon, R. C.; Straka, E. J. and Cohen, J. S. (1988) 31P-NMR spectroscopy of human cancer cells proliferating in a basement membrane gel. FASEB Journal 2: 2596–2604.

    Google Scholar 

  45. Brand, A.; Richter-Landsberg, C.; Flogel, U.; Willker, W. and Leibfritz, D. (1998) Rat brain primary neurons immobilized in basement membrane gel threads: an improved method for on-line 13C NMR spectroscopy of live cells. Brain Res. Brain Res. Protoc. 3: 183–191.

    Google Scholar 

  46. Lundberg, P.; Berners-Price, S. J.; Roy, S. and Kuchel, P. W. (1992) NMR studies of erythrocytes immobilized in agarose and alginate gels. Magn. Reson. Med. 25: 273–288.

    Google Scholar 

  47. Narayan, K. S.; Moress, E. A.; Chatham, J. C. and Barker, P. B. (1990) 31P NMR of mammalian cells encapsulated in alginate gels utilizing a new phosphate-free perfusion medium. NMR Biomed. 3: 23–26.

    Google Scholar 

  48. Kaplan, O. and Cohen, J. S. (1991) Lymphocyte activation and phospholipid pathways. 31P magnetic resonance studies. J. Biol. Chem. 266: 3688–3694.

    Google Scholar 

  49. Ng, C. E.; McGovern, K. A.; Wehrle, J. P. and Glickson, J. D. (1992) 31P NMR spectroscopic study of the effects of gamma-irradiation on RIF-1 tumor cells perfused in vitro. Magn. Reson. Med. 27: 296–309.

    Google Scholar 

  50. Sambanis, A.; Papas, K. K.; Flanders, P. C.; Long, R. C.; Kang, H. and Constantinidis, 1. (1994) Towards the development of a bioartificial pancreas: immunoisolation and NMR monitoring of mouse insulinomas, Cytotechnol. 15: 351–363.

    Article  CAS  Google Scholar 

  51. Constantinidis, I.; Mukundan, N. E.; Gamcsik, M. P. and Sambanis, A. (1997) Towards the development of a bioartificial pancreas: a 13C NMR study on the effects of alginate/poly-L-lysine/alginate entrapment on glucose. Cell. Mol. Biol. 43: 721–729.

    Google Scholar 

  52. Goosen M.:F.:A. (1996) Microencapsulation of Living Cells. In: Willaert, R. G.; Baron, G. V. and De Backer, L. (Eds.), Immobilized Living Cell Systems. John Wiley and Sons, New York, pp. 295–322.

    Google Scholar 

  53. Papas, K. K.; Long, R. C.; Jr., Sambanis, A. and Constantinidis, 1. (1999) Development of a bioartificial pancreas: I. long-term propagation and basal and induced secretion from entrapped betaTC3 cell cultures. Biotechnol. Bioeng. 66: 219–230.

    Google Scholar 

  54. Mancuso, A. (1993) Nuclear magnetic resonance studies of a murine hybridoma in hollow-fiber bioreactor culture, University of California, Berkeley, CA.

    Google Scholar 

  55. Ugurbil, K.; Guernsey, D. L.; Brown, T. R.; Glynn, P.; Tobkes, N. and Edelman, 1. S. (1981) 31P NMR studies of intact anchorage-dependent mouse embryo fibroblasts. Proc. Natl. Acad. Sci. 78: 4843–4847.

    Google Scholar 

  56. Sonnewald, U.; Petersen, S. B.; Krane, J.; Westergaard, N. and Schousboe, A. (1992) Proton NMR study of cortex neurons and cerebellar granule cells on microcarriers and their PCA extracts: lactate production under hypoxia. Magn. Reson. Med. 23: 166–171.

    Google Scholar 

  57. Merle, M.; Pianet, 1.; Canioni, P. and Labouesse, J. (1992) Comparative 31P and 1H NMR studies on rat astrocytes and C6 glioma cells in culture. J. Biochimie 74: 919–930.

    CAS  Google Scholar 

  58. Pilatus, U.; Shim, H.; Artemov, D.; Davis, D.; van Zijl, P. C. and Glickson, J. D. (1997) Intracellular volume and apparent diffusion constants of perfused cancer cell cultures, as measured by NMR. Magn. Reson. Med. 37: 825–832.

    Google Scholar 

  59. Culic, O.; Gruwel, M. L. and Schrader, J. (1997) Energy turnover of vascular endothelial cells. Amer. J. Physiol. 273: C205 - C213.

    CAS  Google Scholar 

  60. Neeman, M.; Rushkin, E.; Kadouri, A. and Degani, H. (1988) Adaptation of culture methods for NMR studies of anchorage-dependent cells. Magn. Reson. Med. 7: 236–242.

    Google Scholar 

  61. Glickson, J. D. (1996) Cells and Cell Systems. In: Encyclopedia of nuclear magnetic resonance, John Wiley, New York.

    Google Scholar 

  62. Mancuso, A.; Wehrli, S. Pickup. S.; Beardsley, N.J. and Glickson, J.D. (2002) Simultaneous determination of oxygen consumption and TCA cycle labeling kinetics detected with 13C NMR spectroscopy. submitted.

    Google Scholar 

  63. Abraha, A.; Shim, H.; Wehrle, J. P.; and Glickson, J. D. (1996) Inhibition of tumor cell proliferation by dexamethasone: 31P NMR studies of RIF-1 fibrosarcoma cells perfused in vitro. NMR Biomed. 9: 173178.

    Google Scholar 

  64. Aiken, N. R.; McGovern, K. A.; Ng, C. E.; Wehrle, J. P. and Glickson, J. D. (1994) 37P NMR spectroscopic studies of the effects of cyclophosphamide on perfused RIF-1 tumor cells. Magn. Reson. Med. 31: 241–247.

    Google Scholar 

  65. Mazariegos, G. V.; Kramer, D. J.; Lopez, R. C.; Shakil, A O; Rosenbloom, A. J.; DeVera, M.; Giraldo, M.; Grogan, T. A.; Zhu, Y.; Fulmer, M. L.; Amiot, B. P. and Patzer, J. F. (2001) Safety observations in phase I clinical evaluation of the Excorp Medical Bioartiticial Liver Support System after the first four patients. ASAIO J. 47: 471–475.

    Article  CAS  Google Scholar 

  66. Mancuso, A.; Sharfstein, S. T.; Tucker, S. N.; Clark, D. S. and Blanch, H. W. (1994) Examination of primary metabolic pathways in a murine hybridoma with carbon-13 nuclear magnetic resonance spectroscopy. Biotechnol. Bioeng. 44: 563–585.

    Google Scholar 

  67. Sharfstein, S. T.; Tucker, S. N.; Mancuso, A.; Blanch, H. W. and Clark, D. S. (1994) Quantitative in vivo nuclear magnetic resonance studies of hybridoma metabolism. Biotechnol. Bioeng. 43: 1059–1074.

    Google Scholar 

  68. Mancuso, A.; Sharfstein, S. T.; Fernandez, E. J.; Clark, D. S. and Blanch, H. W. (1998) Effect of extracellular glutamine concentration on primary and secondary metabolism of a murine hybridoma: an in vivo 13C nuclear magnetic resonance study. Biotechnol. Bioeng. 57: 172–186.

    Google Scholar 

  69. Gillies, R. J.; Scherer, P. G.; Raghunand, N.; Okerlund, L. S.; Martinez-Zaguilan, R.; Hesterberg, L. and Dale, B. E. (1991) Iteration of hybridoma growth and productivity in hollow fiber bioreactors using 31P NMR. Magn. Reson. Med. 18: 181–192.

    Google Scholar 

  70. Minichiello, M. M.; Albert, D. M.; Kolodny, N. H.; Lee, M. S. and Craft, J. L. (1989) A perfusion system developed for 3’P NMR study of melanoma cells at tissue-like density. Magn. Reson. Med. 10: 96–107.

    Google Scholar 

  71. Gonzalez-Mendez, R.; Wemmer, D.; Hahn, G.; Wade-Jardetzky, N. and Jardetzky, O. (1982) Continuous-flow NMR culture system for mammalian cells. Biochim. Biophys. Acta, 720, 274–280.

    Google Scholar 

  72. Potter, K.; Butler, J. J.; Adams, C.; Fishbein, K. W.; Mcfarland, E. W.; Horton, W. E. and Spencer, R. G. S. (1998) Cartilage formation in a hollow fiber bioreactor studied by proton magnetic resonance microscopy. Matrix Biol. 17: 513–523.

    Article  CAS  Google Scholar 

  73. Hrovat, M. I.; Wade, C. G. and Hawkes, S. P. (1985) A Space-Effecient Assembly for NMR Experiments on Anchorage-Dependent Cells. J. Magn. Res. 61: 409–417.

    Google Scholar 

  74. Macdonald, J. M.; Grillo, M.; Schmidlin, O.; Tajiri, D. T. and James, T. L. (1998) NMR spectroscopy and MRI investigation of a potential bioartificial liver. NMR Biomed. 11: 55–66.

    Article  CAS  Google Scholar 

  75. Galons, J. P.; Job, C. and Gillies, R. J. (1995) Increase of GPC levels in cultured mammalian cells during acidosis. A 31P MR spectroscopy study using a continuous bioreactor system. Magn. Reson. Med. 33: 422–426.

    Google Scholar 

  76. Drury, D. D.; Dale, B. E. and Gillies, R. J. (1988) Oxygen transfer properties of a bioreactor for use within a nuclear magnetic resonance spectrometer. Biotechnol. Bioeng. 32: 966–974.

    Google Scholar 

  77. Piret, J. M. and Cooney, C. L. (1991) Model of oxygen transport limitations in hollow fiber bioreactors. Biotechnol. Bioeng. 37: 80–92.

    Google Scholar 

  78. Mancuso, A.; Fernandez, E. J.; Blanch, H. W. and Clark, D. S. (1990) A nuclear magnetic resonance technique for determining hybridoma cell concentration in hollow fiber bioreactors. Bio/Technol. 8: 1282–1285.

    Article  CAS  Google Scholar 

  79. Miller, W. M.; Wilke, C. R. and Blanch, H. W. (1987) Effects of dissolved oxygen concentration on hybridoma growth and metabolism in continuous culture, J. Cell. Physiol. 132: 524–530.

    Google Scholar 

  80. Jain, R. K. (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res. 47: 3039–3051.

    CAS  Google Scholar 

  81. Grote, J.; Susskind, R. and Vaupel, P. (1977) Oxygen diffusivity in tumor tissue (DS-carcinosarcoma) under temperature conditions within the range of 20–40°C. Pflugers Archiv. Eur. J. Physiol. 372: 37–42.

    Google Scholar 

  82. Swabb, E. A.; Wei, J. and Gullino, P. M. (1974) Diffusion and convection in normal and neoplastic tissues. Cancer Res. 34: 2814–2822.

    CAS  Google Scholar 

  83. Ozturk, S. S. and Palsson, B. O. (1990) Effects of dissolved oxygen on hybridoma cell growth, metabolism and antibody production kinetics in continuous culture. Biotechnol. Prog. 6: 437–446.

    Google Scholar 

  84. Hiller, G. W.; Clark, D. S. and Blanch, H. W. (1993) Cell retention-chemostat studies of hybridoma cells-analysis of hybridoma growth and metabolism in continuous suspension culture on serum-free medium. Biotechnol. Bioeng. 42: 185–195.

    Google Scholar 

  85. Miller, W. M. and Blanch, H. W. (1991) Regulation of animal cell metabolism in bioreactors. In: Ho, C.S. and Wang, D.I.0 (Eds.), Animal Cell Bioreactors (17 ed.). Butterworth-Heinemann, Stoneham, MA, pp. 119–161.

    Google Scholar 

  86. Cohen, J. S.; Lyon, R. C.; Chen, C.; Faustino, P. J.; Batist, G.; Shoemaker, M.; Rubalcaba, E. and Cowan, K. H. (1986) Differences in phosphate metabolite levels in drug-sensitive and -resistant human breast cancer cell lines determined by 31P magnetic resonance. Cancer Res. 46: 4087–4090.

    CAS  Google Scholar 

  87. Kaplan, O.; Navon, G.; Lyon, R. C.; Faustino, P. J.; Straka, E. J. and Cohen, J. S. (1990) Effects of 2deoxyglucose on drug-sensitive and drug-resistant human breast cancer cells: toxicity and magnetic resonance spectroscopy studies of metabolism. Cancer Res. 50: 544–551.

    CAS  Google Scholar 

  88. Degani, H.; Ronen, S.M.; and Rurman-Haran, E. (1994) Breast Cancer: Spectroscopy and Imaging of Cells and Tumors. In: Gillies, R.J. (Ed.), NMR in physiology and biomedicine, Academic Press, San Diego, CA, pp. 329–351.

    Google Scholar 

  89. Neeman, M.; Eldar, H.; Rushkin, E. and Degani, H. Chemotherapy-induced changes in the energetics of human breast cancer cells; 31P- and 73C-NMR studies. (1990) Biochim. Biophys. Acta 1052: 255–263.

    Google Scholar 

  90. Berghmans, K.; Ruiz-Cabello, J.; Simpkins, H.; Andrews, P. A., and Cohen, J. S. (1992) Increase in the ATP signal after treatment with cis-platin in two different cell lines studied by 31P NMR spectroscopy. Biochem. Biophys. Res. Comm. 183: 114–120.

    Google Scholar 

  91. Szwergold, B.S.; Brown T. R. and Freed, J.J. (1989) Bicarbonate abolishes intracellular alkalinization in mitogen-stimulated 3T3 cells. J. Cell. Physiol. 138: 227–235.

    Google Scholar 

  92. van Sluis, R.; Bhujwalla, Z. M.; Raghunand, N.; Ballesteros, P.; Alvarez, J.; Cerdan, S.; Galons, J. P. and Gillies, R. J. (1999) In vivo imaging of extracellular pH using 1H MRSI. Magn. Reson. Med. 41: 743750.

    Google Scholar 

  93. Gerweck, L. E. (1998) Tumor pH: implications for treatment and novel drug design. Seminars in Radiation Oncology 8: 176–182.

    Article  CAS  Google Scholar 

  94. Raghunand, N.; He, X.; van Sluis, R.; Mahoney, B.; Baggett, B.; Taylor, C. W.; Paine-Murrieta, G.; Roe, D.; Bhujwalla, Z. M. and Gillies, R. J. (1999) Enhancement of chemotherapy by manipulation of tumour pH. Brit. J. Cancer: 80: 1005–1011.

    Google Scholar 

  95. Matschinsky, F. M. (1996) Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes 45: 223–241.

    Google Scholar 

  96. Papas, K. K.; Long, R. C.; Constantinidis, 1. and Sambanis, A. (1997) Role of ATP and Pi in the mechanism of insulin secretion in the mouse insulinoma betaTC3 cell line. Biochem. J. 326: 807–814.

    Google Scholar 

  97. Papas, K. K.; Long, R. C.; Sambanis, A. and Constantinidis, I. (1999) Development of a bioartificial pancreas: II. Effects of oxygen on long-term entrapped betaTC3 cell cultures. Biotechnol. Bioeng. 66: 231–237.

    Google Scholar 

  98. Papas, K. K.; Long, R. C.; Constantinidis, 1. and Sambanis, A. (2000) Effects of short-term hypoxia on a transformed cell-based bioartificial pancreatic construct. Cell Transplant. 9: 415–422.

    CAS  Google Scholar 

  99. Stejskal, E. O. and Tanner, J. E. (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42: 288–292.

    Google Scholar 

  100. Potter, K.; Butler, J. J.; Horton, W. E. and Spencer, R. G. S. (2000) Response of engineered cartilage tissue to biochemical agents as studied by proton magnetic resonance microscopy. Arthrit. Rheumat. 43: 1580–1590.

    Google Scholar 

  101. Potter, K.; Leapman, R. D.; Basser, P. J. and Landis, W. J. (2002) Cartilage calcification studied by proton nuclear magnetic resonance microscopy. J. Bone Mineral Res. 17: 652–660.

    Article  CAS  Google Scholar 

  102. Petersen, E. F.; Fishbein, K. W.; Mcfarland, E. W. and Spencer, R. G. (2000) 31P NMR spectroscopy of developing cartilage produced from chick chondrocytes in a hollow-fiber bioreactor. Magn. Reson. Med., 44, 367–372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mancuso, A., Glickson, J.D. (2004). Applications of NMR Spectroscopy and Imaging to the Study of Immobilised Cell Physiology. In: Nedović, V., Willaert, R. (eds) Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1638-3_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6534-6

  • Online ISBN: 978-94-017-1638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics