Skip to main content

Part of the book series: Focus on Biotechnology ((FOBI,volume 8A))

Abstract

Over the last decades, immobilised cell systems were widely investigated and used in different fields of biotechnology such as pharmacy, biomedicine, food and environmental technologies Immobilised cell technology is successfully established at the industrial scale in wastewater treatment and production of biopharmaceuticals and fermented beverages. Cell immobilisation provides several advantages over the conventional free cell systems including higher cell concentrations, higher volumetric productivities, cell protection required for shear sensitive cells, and easy separation of cells and products. In addition, immobilised cell systems can be operated in continuous mode at higher dilution rates without the risk of cell washout. Especially attractive are the options for co-immobilisation of different cell types for the simultaneous implementation of consecutive reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nedović, V.A.; Obradovic, B.; Leskosek-Cukalovic, I. and Vunjak-Novakovic, G. (2001) Immobilized yeast bioreactor systems for brewing — recent achievements. In: Thonart, Ph. and Hofinan, M. (Eds.) Focus on Biotechnology, Volume 4: Engineering and Manufacturing for Biotechnology. Kluwer Academic Publishers, Dordrecht; pp. 277–292.

    Google Scholar 

  2. Gil, G.H.; Jones, W.J. and Tornabene, T.G. (1991) Continuous ethanol production in a two-stage, immobilised/suspended-cell bioreactor. Enzyme Microb. Technol. 13: 390–399.

    Google Scholar 

  3. Masschelein, C.A. and Andries, M. (1997) The Meura-Delta immobilised yeast fermenter for the continuous production of beer. Cerevisia 21 (4): 28–31.

    Google Scholar 

  4. Cao, Y.S. and Alaerts, G.J. (1995) Influence of reactor type and shear stress on aerobic biofilm morphology, population and kinetics. Wat. Res. 29: 107–118.

    Google Scholar 

  5. Nicolella, C.; van Loosdrecht, M.C.M. and Heijnen, S.J. (2000) Wastewater treatment with particulate biofilm reactors. J. Biotechnol. 80: 1–33.

    CAS  Google Scholar 

  6. Nicolella, C.; van Loosdrecht, M.C.M. and Heijnen, S.J. (2000) Particle-based biofilm reactor technology. Trends Biotechnol. 18: 312–320.

    CAS  Google Scholar 

  7. Characklis, W.G.; Turukhia, M.H. and Zelver, N. (1990) Transport and interfacial transfer phenomena. In: Characklis, W.G. and Marshall, K.C. (Eds.) Biofilms Willey Intersci., New York; pp. 265–340.

    Google Scholar 

  8. Zlokarnik, M. (1972) Ruhrtechnik. In: Ullmann Encyklopaedie der Technischen Chemie, Band II, Verlag Chemie, Weinheim, pp 259.

    Google Scholar 

  9. Zlokarnik, M. and Judat, H. (1987) Mixing, Bayer, Leverkusen, pp 1.

    Google Scholar 

  10. Doran, P.M. (1995) Bioprocess engineering principles. Academic Press, London.

    Google Scholar 

  11. Perry, R.H. and Green, D.W. (1997) Perry’s chemical engineers’ handbook. 7°i edition, McGraw-Hill, New York.

    Google Scholar 

  12. van der Pol, L. and Tramper, J. (1998) Shear sensitivity of animal cells from a culture-medium perspective. Trends Biotechnol. 16: 323–328.

    Google Scholar 

  13. Baron, G.V.; Willaert, R.G. and De Backer, L. (1996) Immobilised cell reactors. In: Willaert, R.G.; Baron, G.V. and De Backer, L. (Eds.) Immobilised living cell systems: Modelling and experimental methods. John Wiley & Sons Ltd., New York; pp. 67–95.

    Google Scholar 

  14. Wang, S.-J. and Zhong, J.-J. (1996) A novel centrifugal impeller bioreactor. 1. Fluid circulation, mixing, and liquid velocity profiles. Biotechnol. Bioeng. 51: 511–519.

    Google Scholar 

  15. Wang, S.-J. and Zhong, J.-J. (1996) A novel centrifugal impeller bioreactor. II. Oxygen transfer and power consumption. Biotechnol. Bioeng. 51: 520–527.

    Google Scholar 

  16. Ting, Y.-P. and Sun, G. (2000) Use of polyvinil alcohol as a cell immobilisation matrix for copper biosorption by yeast cells. J. Chem. Technol. Biotechnol. 75: 541–546.

    Google Scholar 

  17. Vogelsang, C.; Husby, A. and Ostgaard, K. (1997) Functional stability of temperature-compensated nitrification in domestic wastewater treatment obtained with PVA-SbQ/alginate gel entrapment. Wat. Res. 31: 1659–1664.

    Google Scholar 

  18. Lamboley, L.; Lacroix, C.; Champagne C. P. and Vuillemard J. C. (1997) Continuous mixed strain mesophilic lactic starter production in supplemented whey permeate medium using immobilised cell technology. Biotechnol. Bioeng. 56: 502–516.

    Google Scholar 

  19. Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Dunnill, P.; Humphrey, A.E. and Lilly, M.D. (1979) Fermentation and enzyme technology, John Wiley & Sons, Inc., New York, pp. 157.

    Google Scholar 

  20. Godia, F.; Casas, C. and Sola, C. (1987) A survey of continuous ethanol fermentation systems using immobilised cells. Process Biochem. April: 43–48.

    Google Scholar 

  21. Kurosawa, H.; Nomura, N. and Tanaka, H. (1989) Ethanol production from starch by a coimmobilised mixed culture system of Aspergillus awamori and Saccharomyces cerevisiae. Biotechnol. Bioeng. 33: 716723.

    Google Scholar 

  22. Prévost, H.; Diviès, C. and Rousseau, E. (1985) Continuous yoghurt production with Lactobacillus bulgaricus and Streptococcus thermophilus entrapped in Ca-alginate. Biotechnol. Lett. 7: 247.

    Google Scholar 

  23. Sodini, I.; Corrieu, G. and Lacroix, C. (1996) Practical use of an immobilised cell bioreactor for continuous prefermentation of milk. In: Wijffels, R.H.; Buitelaar, R.M.; Bucke, C. and Tramper, J. (Eds.) Immobilised cells: basic and applications. Elsevier, Amsterdam; pp. 687–692.

    Google Scholar 

  24. Park, H.-J. and Khang, Y.-H. (1995) Production of cephalosporin C by immobilised Cephalosporium acremanium in polyethyleneimine-modified barium alginate. Enzyme Microb. Technol. 17: 408–412.

    Google Scholar 

  25. Chu, L. and Robinson, D.K. (2001) Industrial choices for protein production by large-scale cell culture. Cum Opin. Biotechnol. 12: 180–187.

    Google Scholar 

  26. Kappelhof, J.W.N.M.; Hoek, J.P. van der and Hijnen, W.A.M. (1991) Experiences with fixed bed denitrification using ethanol as substrate for nitrate removal from ground water. In: Proc. IWSA International Workshop Inorganic Nitrogen Compounds and Water Supply, Hamburg, Germany, November 27–29, 1991; pp. 101–112.

    Google Scholar 

  27. Pajunen, E. (1996) Immobilized yeast lager beer maturation: DEAE-cellulose at Sinebrychoff. In: Monograph XXIV, Eur. Brew. Cony., Verlag Hans Carl Getranke-Fachverlag, Nurnberg (Germany); pp. 24–34.

    Google Scholar 

  28. Kronlof, J. and Virkajarvi, I. (1999) Primary fermentation with immobilized yeast. In: Proc. 27th Congr. Eur. Brew. Cony., Cannes (France); The European Brewery Convention, Zoeterwoude (Netherlands); pp. 761–771.

    Google Scholar 

  29. Chotani, C.K. and Constantinides, A. (1984) Immobilised cell cross-flow reactor. Biotechnol. Bioeng. 26: 217–220.

    Google Scholar 

  30. Roca, E.; Flores, J.; Nunez, M.J. and Lema, J.M. (1996) Ethanolic fermentation by immobilised Sacharomyces cerevisiae in a semipilot pulsing packed-bed bioreactor. Enzyme Microb. Technol. 19: 132139.

    Google Scholar 

  31. Khattar, J.1.S.; Sarma, T.A. and Singh, D.P. (1999) Removal of chromium ions by agar immobilised cells of the cyanobacterium Anacystis nidulans in a continuous flow bioreactor. Enzyme Microb. Technol. 25: 564–568.

    Google Scholar 

  32. Goksungur, Y. and Zorlu, N. (2001) Production of ethanol from beet molasses by Ca-alginate immobilised yeast cells in a packed-bed bioreactor. Turk. J. Biol. 25: 265–275.

    Google Scholar 

  33. Chien, N.K. and Sofer, S.S. (1985) Flow rate and bead size as critical parameters for immobilised-yeast reactors. Enzyme Microb. Technol. 7: 538–542.

    Google Scholar 

  34. Andersen, K.; Bergin, J.; Ranta, B.; and Viljava, T. (1999) New process for continuous fermentation of beer. In: Proc. 27th Congr. Eur. Brew. Cony, Cannes (France); IRL Press, Oxford; pp. 771–778.

    Google Scholar 

  35. Tata, M.; Bower, P.; Bromberg, S.; Duncombe, D.; Fehring, J.; Lau, V.; Ryder, D. and Stassi, P. (1999) Immobilized yeast bioreactor systems for continuous beer fermentation. Biotechnol. Prog. 15: 105–113.

    Google Scholar 

  36. Vega, J.L.; Clausen, E.C. and Gaddy, J.L. (1987) Maximizing productivity in an immobilised cell reactor. In: Shuler, M.L. and Weigand, W.A. (Eds.) Biochemical Engineering V. Annals of New York Academy of Sciences, New York; vol 506; pp. 208–228.

    Google Scholar 

  37. Lienhardt, J.; Schripsema, J.; Qureshi, N. and Blaschek, H. (2002) Butanol production by Clostridium beijerinckii BA101 in an immobilised cell biofilm reactor. Appl. Biochem. Biotechnol. 98–100: 591–598.

    Google Scholar 

  38. Lewis, V.P. and Yang, S.-T. (1992) Continuous propionic acid fermentation by immobilised Propionibacterium acidipropionici in a novel packed-bed bioreactor. Biotechnol. Bioeng. 40: 465–474

    Google Scholar 

  39. Yang, S.-T.; Zhu, H.; Li, Y. and Hong, G. (1994) Continuous propionate production from whey permeate using a novel fibrous bed bioreactor. Biotechnol. Bioeng. 43: 1124–1130.

    Google Scholar 

  40. Yang, S.-T.; Huang, Y. and Hong, G. (1995) A novel recycle batch immobilised cell bioreactor for propionate production from whey lactose. Biotechnol. Bioeng. 45: 379–386.

    Google Scholar 

  41. Yang, S.-T.; Lo, Y.-M. and Min, D.B. (1996) Xanthan gum fermentation by Xanthomonas campestris immobilised in a novel centrifugal fibrous-bed bioreactor. Biotechnol. Prog. 12: 630–637.

    Google Scholar 

  42. van der Hoek, J.P.; Jong, R.C.M.; Kappelhof, J.W.N.M.; Hijnen, W.A.M.; Creusen, A.J.H.F.; Bekkers, A.J.M.E. and Feij, L.A.C. (1993) Nitrate removal from ground water by biological filtration using the fixed bed/ethanol process. In: Proc. European Water Filtration Congress, Ostende, Belgium, 15–17 March 1993, vol. 17; pp. 2. 55–2. 66.

    Google Scholar 

  43. van der Hoek, J.P.; Kruithof, J.C. and Schippers, J.C. (1991) Design, operation and maintenance of a 35m3/h sulphur/limestone demonstration plant for nitrate removal from groundwater. In: Proc. 181h International Water Supply Congress, Copenhagen, Denmark, 25–31 May, 1991; pp. SS1–4 - SS1–l0.

    Google Scholar 

  44. Shan, J. and Zhang, T.C. (1998) Septic tank effluent denitrification with sulphur/limestone process. In: Proceedings of the 1998 Conference on Hazardous Waste Research, Snowbird, Utah, 18–21 May, 1998; pp. 348–362.

    Google Scholar 

  45. Silva, A.J.; Varesche, M.B.; Foresti, E. and Zaiat, M. (2002) Sulphate removal from industrial wastewater using a packed-anaerobic reactor. Proc. Biochem. 37: 927–935.

    Google Scholar 

  46. Lommi, H. (1990) Immobilized yeast for maturation and alcohol-free beer, Brew. Dist. Int. 5: 22–23.

    Google Scholar 

  47. Pajunen, E. and Jaaskelainen, K. (1993) Sinebrychoff Kerava — a brewery for 90s, In: Proc. 24m Congr. Eur. Brew. Cony., Oslo (Norway); IRL Press, Oxford (UK); pp. 559–567.

    Google Scholar 

  48. Buffiere, P.; Bergeon, J-P. and Moletta, R. (2000) The inverse turbulent bed: a novel bioreactor for anaerobic treatment. Wat. Res. 34: 673–677.

    Google Scholar 

  49. Petersen, J.N. and Davison, B.H. (1991) Modelling of an immobilised-cell three-phase fluidized-bed bioreactor. Appl. Biochem. Biotechnol. 28: 685–698.

    Google Scholar 

  50. Petersen, J.N. and Davison, B.H. (1995) Development of a predictive description of an immobilised-cell, three-phase, fluidized-bed bioreactor. Biotechnol. Bioeng. 48: 139–146.

    Google Scholar 

  51. Buffiere, P.; Fonade, C. and Moletta, R. (1998) Mixing and phase hold-ups variations due to gas production in anaerobic fluidized-bed digesters: Influence on reactor performance. Biotechnol. Bioeng. 60: 36–43.

    Google Scholar 

  52. Frankin, R.; Koevoetes, W.A.A.; van Gils, W.M.A. and van der Pas, A. (1992) Application of the Biobed upflow fluidized-bed process for anaerobic waste water treatment. Water Sci. Technol. 25: 373–382.

    Google Scholar 

  53. Zoutberg, G.R. and Frankin, R. (1996) Anaerobic treatment of chemical and brewery waste water with a new type of anaerobic reactor: the Biobed EGSB reactor. Water Sci. Technol. 34: 375–381.

    Google Scholar 

  54. Gonzales-Gil, G.; Lens, P.N.L.; Van Aelst, A.; Van As, H.; Versprille, A.I. and Lettinga, G. (2001) Cluster structure of anaerobic aggregates of an expanded granular bed reactor. Appl. Environ. Microbiol. 67: 3683–3692.

    Google Scholar 

  55. Webb, O.F.; Davison, B.H.; Scott, T.C. and Scott, C.D. (1995) Design and demonstration of an immobilised-cell fluidized-bed-reactor for the efficient production of ethanol. Appl. Biochem. Biotechnol.; 51 /52: 559–568.

    Google Scholar 

  56. Merchuk, J. (1990) Why use air-lift bioreactors? Trends Biotechnol. 8: 66–71.

    Google Scholar 

  57. Nedovic, V.A.; Leskosek-Cukalovic, I.; Milosevic, V. and Vunjak-Novakovic, G. (1997) Flavour formation during beer fermentation with immobilized Saccharomyces cerevisiae in a gas-lift bioreactor. In: Conference proceedings, Godia, F. and Poncelet, D. (Eds.) Int. Workshop Bioencapsulation VI “From fundamentals to industrial applications”, Barcelona (Spain), August 30—September 1, 1997; UAB, Barcelona (Spain); T5. 3, pp. 1–4.

    Google Scholar 

  58. Heijnen, J.J. (1996) Scale-up aspects of immobilised cell reactors. In: Wijffels, R.H.; Buitelaar, R.M.; Bucke C. and Tramper, J. (Eds.) Immobilised cells: basics and applications. Elsevier, Amsterdam; pp. 497504.

    Google Scholar 

  59. Fields, P.R. and Slater, N.H.K. (1983) Tracer dispersion in a laboratory air-lift reactor. Chem. Emg. Sci. 38: 647–653.

    Google Scholar 

  60. Verlaan, P.; Tramper, J.; van’t Riet, K. and Luyben, K.Ch.A.M. (1986) Hydrodynamics and axial dispersion in an air-lift loop bioreactor with two and three-phase flow. In: Proc. Int. Conf. on Bioreactor Fluid Dynamics, Cambridge, England; pp. 15–17.

    Google Scholar 

  61. Verlaan, P.; van Eijs, A.M.M.; Tramper, J.; van’t Riet, K. and Luyben, K.Ch.A.M. (1986) Estimation of axial dispersion in individual sections in an airlift-loop reactor. Chem. Eng. Sci. 44: 1139–1146.

    Google Scholar 

  62. Vunjak-Novakovic, G.; Jovanovic, G.; Kundakovic, Lj. and Obradovic, B. (1992) Flow regimes and liquid mixing in a draft tube gas-liquid-solid fluidized bed. Chem.Eng. Sci. 47: 3451–3458.

    Google Scholar 

  63. Obradovic, B.; Dudukovic, A. and Vunjak-Novakovic, G. (1994) Local and overall mixing characteristics of the gas-liquid-solid air-lift reactor. Ind. Eng. Chem. 33: 698–702.

    Google Scholar 

  64. Lu, W.-J.; Hwang, S.-J. and Chang, C.-M. (1994) Liquid mixing in internal loop airlift reactors. Ind. Eng. Chem. Res. 33: 2180–2186.

    Google Scholar 

  65. Lu, W.-J.; Hwang, S.-J. and Chang, C.-M. (1994) Liquid mixing in two-and three-phase airlift reactors. Chem. Eng. Sci. 49: 1465–1468.

    Google Scholar 

  66. Obradovic B.; Dudukovic A. and Vunjak-Novakovic, G. (1997) Response data analysis of a three phase airlift reactor, Trans. 1. Chem. E. 75 part A: 473–479.

    Google Scholar 

  67. van Benthum, W.A.J.; Garrido-Fernandez, J.M.; Tijhuis, L.; van Loosdrecht, M. C. M. and Heijnen, J. J. (1996) Formation and detachment of biofilms and granules in a nitrifying biofilm airlift suspension reactor. Biotechnol. Prog. 12: 764–772.

    Google Scholar 

  68. Camacho, F.G.; Grima, E. M.; Miron, A.S.; Pascual, V.G. and Chisti, Y. (2001) Carboxymethyl cellulose protects algal cells against hydrodynamic stress. Enzyme Microb. Technol. 29: 602–610.

    Google Scholar 

  69. Loh, K.-C. and Liu, J. (2001) External loop inversed fluidized bed airlift bioreactor (EIFBAB) for treating high strength phenolic wastewater. Chem. Eng. Sci. 56: 6171–6176.

    Google Scholar 

  70. Chisti, M.Y. (1989) Airlift Bioreactors. Elsevier Applied Science, London and New York.

    Google Scholar 

  71. Miron, A.S.; Camacho, F.G.; Gomez, A.C.; Grima E. M. and Chisti, Y. (2000) Bubble-column and airlift photobioreactors for algal culture. AIChE J. 46: 1872–1887.

    CAS  Google Scholar 

  72. Bugarski, B.; Jovanovic, G.; Daugulis, A.J. and Goosen, M.F.A. (1989) Performance of an external loop air-lift bioreactor for the production of monoclonal antibodies by immobilised hybridoma cells. App. Microbiol. Biotechnol. 30: 264–269.

    Google Scholar 

  73. Bugarski, B.; Sofronic-Milosavljevic, Lj.; Cuperlovic, K.; Goosen, M.F.A.; Jovanovic, G. and VunjakNovakovic, G. (1992) Oxygen transfer in an external air-lift bioreactors for the production of monoclonal antibodies, In: Macroscopic and Microscopic Heat and Mass Transfer. In: Diller, K. and Shitzer, A. (Eds.) Biomedical Engineering. International Center for Heat and Mass Transfer, ICHMT press, Moscow, Russia; pp. 83–92.

    Google Scholar 

  74. Bugarski, B.; Jovanovic, G. and Vunjak-Novakovic, G. (1993) Bioreactor systems based on microencapsulated animal cell cultures. In: Goosen, M.F.A (Ed.) Fundamentals of Animal Cell Encapsulation and Immobilisation. CRC Press Inc., Boca Raton, Florida; pp 267–296.

    Google Scholar 

  75. Nicolella, C.; van Loosdrecht, M.C.M.; van der Lans, R.G.J.M. and Heijnen, J.J. (1998) Hydrodynamic characteris-tics and gas—liquid mass transfer in a biofilm airlift suspension reactor. Biotechnol. Bioeng. 60: 627–635.

    Google Scholar 

  76. Wijffels, R.H.; Verheul, M.; Beverloo, W.A. and Tramper, J. (1998) Liquid/solid mass transfer in an airlift loop reactor with a dispersed solid phase. J. Chem. Technol. Biotechnol. 71: 147–154.

    Google Scholar 

  77. Keshavarz, T.; Bucke, C. and Lilly, M.D. (1996) Problems in scale-up of immobilised cell cultures. In: Wijffels, R.H.; Buitelaar, R.M.; Bucke, C. and Tramper, J. (Eds.) Immobilised cells: basics and applications. Elsevier, Amsterdam; pp. 505–510.

    Google Scholar 

  78. Margaritis, A. and Wallace, J.B. (1984) Novel bioreactor systems and their applications. Bio/technology. May: 447–453.

    Google Scholar 

  79. Sajc, L.; Obradovic, B.; Vukovic, D.V.; Bugarski, B. and Vunjak-Novakovic, G. (1995a) Hydrodynamics and mass transfer in a four-phase external loop air lift bioreactor. Biotechnol. Prog.; 11: 420–428.

    Google Scholar 

  80. Sajc, L.; Vunjak-Novakovic, G.; Grubisic, D.; Kovacevic, N.; Vukovic, D. and Bugarski, B. (1995b) Production of antraquinones by immobilised Frangula alnus Mill. plant cells in a four-phase air lift bioreactor. Appl. Microbiol. Biotechnol. 43: 416–423.

    Google Scholar 

  81. Bakker, W.A.M.; van Can, H.J.L.; Tramper, J. and de Gooijer, C.D. (1993) Hydrodynamics and mixing in a multiple air-lift loop reactor. Biotechnol. Bioeng. 42: 994–1001.

    Google Scholar 

  82. Bakker, W.A.M.; Overdevest, P.E.M.; Beeftnik, H.H.; Tramper, J. and de Gooijer, C.D. (1997) Serial airlift bioreactors for the approximation of aerated plug flow. Trends Biotechnol. 15: 264–269.

    CAS  Google Scholar 

  83. Ranz, W.E. and Marshall, W.R. (1972) Evaporation from drops, part II. Chem. Eng. Prog. 48: 173–180.

    Google Scholar 

  84. Heath, C.A. and Belfort, G. (1990) Membranes and bioreactors. Int. J. Biochem. 22: 823–835.

    Google Scholar 

  85. Brindle, K. and Stephenson, T. (1996) Mini-review: the application of membrane biological reactors for the treatment of wastewaters. Biotechnol. Bioeng. 49: 601–610.

    Google Scholar 

  86. Fonseca, A.D., Crespo, J.G., Almeida, J.S. and Reis, M.A. (2000) Drinking water denitrification using a novel ion-exchange membrane bioreactor. Environ. Sci. Technol. 34: 1557–1562.

    Google Scholar 

  87. Livingston, A.G. (1993) A novel membrane bioreactor for detoxifying industrial wastewater: I. Biodegradation of phenol in a synthetically concocted wastewater. Biotechnol. Bioeng. 41: 915–926.

    Google Scholar 

  88. Mathers, M. (2000) Novel membrane bioreactor converts waste to commodity. Filtr. Sep. Sept. 30–32.

    Google Scholar 

  89. Casey, E.; Glennon, B.; and Hamer, G. (1999) Oxygen mass transfer characteristics in a membrane-aerated biofilm reactor. Biotechnol. Bioeng. 62: 183–192.

    Google Scholar 

  90. Lefevbre, J. and Vincent, J.-C. (1997) Control of the biomass heterogeneity in immobilised cell systems. Influence of initial cell and substrate concentrations, structure thickness, and type of bioreactors. Enzyme Microb. Technol. 20: 536–543.

    Google Scholar 

  91. Uemoto, H.; Watanabe, A.; Saitoh, S.; Kondo, T.; Matuki, Y.; Masukawa, M.; Matsumura, H. and Koike, Y. (1999) Closed water recirculating system for fish rearing equipped with bioreactor capable of simultaneous nitrification and denitrification. Biol. Sci. Space, 13: 341–347.

    Google Scholar 

  92. Uemoto, H.; Ando, A. and Saiki, H. (2000) Effect of oxygen concentration on nitrogen removal by Nitrosomonas europaea and Paracoccus denitrificans immobilised within tubular polymeric gel. J. Biosci. Bioeng. 90: 654–660.

    Google Scholar 

  93. Uemoto, H. and Saiki, H. (2000) Distribution of Nitrosomonas europaea and Paracoccus denitrificans immobilised in tubular polymeric gel for nitrogen removal. Appl. Environ. Microbiol. 66: 816–819.

    Google Scholar 

  94. Uemoto, H. and Saiki, H. (2000) Nitrogen removal reactor using packed gel envelopes containing Nitrosomonas europaea and Paracoccus denitrificans. Biotechnol. Bioeng. 67: 80–86.

    Google Scholar 

  95. Griffiths, B. (1990) Perfusion systems for cell cultivation. In: Lubiniecki, A.S. (Ed.) Large-scale mammalian cell culture technology. Marcel Dekker, New York; pp. 217–250.

    Google Scholar 

  96. Handa-Corrigan, A.; Nikolay, S.; Fletcher, D.; Mistry, S.; Young, A. and Ferguson, C. (1995) Monoclonal antibody production in hollow-fiber bioreactors: process control and validation strategies for manufacturing industry. Enzyme Microb. Technol. 17: 225–230.

    Google Scholar 

  97. Heath, C.A. and Belfort, G. (1992) Synthetic membranes in biotechnology: realities and possibilities. Adv. Biochem. Eng. Biotechnol. 47: 45–88.

    Google Scholar 

  98. Heath, C.A. (1996) Immobilisation in hollow fibre reactors. In: Willaert, R.G.; Baron G.V. and De Backer, L. (Eds.) Immobilised living cell systems: Modelling and experimental methods. John Wiley & Sons Ltd., New York; pp. 323–343.

    Google Scholar 

  99. Brotherton, J.D. and Chau, P.C. (1996) Modelling of axial-flow hollow fibre cell culture bioreactors. Biotechnol. Prog. 12: 575–590.

    Google Scholar 

  100. Lloyd, J.R.; Harding, C.L. and Macaskie, L.E. (1997) Tc(VII) reduction and accumulation by immobilised cells of Escherichia coll. Biotechnol. Bioeng. 55 505–510.

    Google Scholar 

  101. Brotherton, J.D. and Chau, P.C. (1995) Protein-free human-human hybridoma cultures in an intercalated-spiral alternate-dead-ended hollow fibre bioreactor. Biotechnol. Bioeng. 47: 384–400.

    Google Scholar 

  102. Wolfe, S.P.; Hsu, E.; Reid, L.M. and Macdonald, J.M. (2002) A novel multi-coaxial hollow fiber bioreactor for adherent cell types. Part 1: Hydrodynamic studies. Biotechnol. Bioeng. 77: 83–90.

    Google Scholar 

  103. Inoue, Y.; Kawamoto, S.; Seki, K.; Teruya, K.; Mochizuki, K.; Kato, M.; Hashizume, S.; Yasumoto, K.; Nagashima, A.; Nakahashi, H.; Suzuki, T.; Imai, T.; Nomoto, K. and Shirahata, S. (1996) Production of a recombinant human monoclonal antibody using a novel hollow fibre bioreactor system. J. Ferment. Bioeng. 81: 466–469.

    Google Scholar 

  104. Bitter, J.G.A. (1991) Transport mechanisms in membrane separation processes, Plenum Press, New York, pp. 11.

    Google Scholar 

  105. Salmon, P.M.; Libicki, S.B. and Robertson, C.R. (1988) A theoretical investigation of convective transport in the hollow-fiber reactor. Chem. Eng. Comm. 66: 221–248.

    Google Scholar 

  106. Heath, C.A.; Belfort, G.; Hammer, B.E.; Mirrer, S.D. and Pimbley, J.M. (1990) Magnetic resonance imaging and modeling of flow in hollow fiber bioreactors. AIChE J. 36: 547–558.

    CAS  Google Scholar 

  107. Kelsey, L.J.; Pillarella, M.R. and Zydney, A.L. (1990) Theoretical analysis of convective flow profiles in a hollow-fiber membrane bioreactor. Chem. Eng. Sci. 45: 3211–3220.

    Google Scholar 

  108. Pillarella, M.R. and Zydney, A.L. (1990) Theoretical analysis of the effect of convective flow on solute transport and insulin release in a hollow fiber bioartificial pancreas. Trans. ASME 112: 220–228.

    Google Scholar 

  109. Piret, J.M. and Cooney, C.L. (1991) Model of oxygen transport limitations in hollow fibre bioreactors. Biotechnol. Bioeng. 37: 80–92.

    Google Scholar 

  110. Labecki, M.; Bowen, B.D. and Piret, J.M. (1996) Two-dimensional analysis of protein transport in the extracapillary space of hollow-fibre bioreactors. Chem. Eng. Sci. 51: 4197–4213.

    Google Scholar 

  111. Koska, J.; Bowen, B.D. and Piret, J.M. (1997) Protein transport in packed-bed ultrafiltration hollow-fibre bioreactors. Chem. Eng. Sci. 52: 2251–2263.

    Google Scholar 

  112. Kumar, R.A. and Modak, J.M. (1997) Transient analysis of mammalian cell growth in hollow fibre bioreactor. Chem. Eng. Sci. 52: 1845–1860.

    Google Scholar 

  113. Apelblat, A.; Katzir-Katchalsky, A. and Silberberg, A. (1974) A mathematical analysis of capillary-tissue fluid exchange. Biorheol. 11: 1–49.

    CAS  Google Scholar 

  114. Taylor, D.G.; Piret, J.M. and Bowen, B.D. (1994) Protein polarization in isotropic membrane hollow-fibre bioreactors. AIChEJ. 40: 321–333.

    CAS  Google Scholar 

  115. Labecki, M.; Weber, I.; Dudal, Y.; Koska, J.; Piret, J.M. and Bowen, B.D. (1998) Hindered transmembrane protein transport in hollow-fibre devices. J. Memb. Sci. 146: 197–216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Obradovic, B., Nedović, V.A., Bugarski, B., Willaert, R.G., Vunjak-Novakovic, G. (2004). Immobilised Cell Bioreactors. In: Nedović, V., Willaert, R. (eds) Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1638-3_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6534-6

  • Online ISBN: 978-94-017-1638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics