Skip to main content

Cell Immobilisation in Pre-Formed Porous Matrices

  • Chapter
Fundamentals of Cell Immobilisation Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 8A))

Abstract

Immobilised cell systems are usually subdivided into 4 major categories according to the physical mechanism of cell location, i.e. surface attachment, entrapment within “porous matrices”, “containment behind a barrier” and “self-aggregation of cells” [1]. The category “entrapment within porous matrices” can be further subdivided — based on the type of the used immobilisation support material — into “gel entrapment” and “ preformed porous supports”. In this chapter, the category “cell immobilisation in preformed porous matrices” will be reviewed. Firstly, a few examples of the use and application of porous immobilisation matrices are given. Next, the adhesion of cells to a support material is reviewed. This chapter ends with an in depth discussion of the cell immobilisation process, i.e. immobilisation kinetics and mass transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karel, S.F.; Libicki, S.B. and Robertson, C.R. (1985) The immobilization of whole cells: engineering principles. Chem. Eng. Sci. 40: 1321–1354.

    Article  CAS  Google Scholar 

  2. Freed, L.E.; Marquis, J.C.; Nohria, A.; Emmanual J.; Mikos, A.G. and Langer, R. (1993) Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J. Biomed. Mat. Res. 27: 11–23.

    Article  CAS  Google Scholar 

  3. Freed, L.E.; Marquis, J.C.; Vunjak-Novakovic, G.; Emmanual, J. and Langer, R. (1994) Composite of cell-polymer cartilage implants. Biotechnol. Bioeng. 43: 605–614.

    Article  CAS  Google Scholar 

  4. Freed, L.E.; Vunjak-Novakovic, G.; Marquis, J.C. and Langer, R. (1994) Kinetics of chondrocyte growth in cell-polymer implants. Biotechnol. Bioeng. 43: 597–604.

    Article  CAS  Google Scholar 

  5. Ma, T.; Li, Y.; Yang, S.-T. and Kniss, D.A. (2000) Effects of pore size in 3–D fibrous matrix on human trophoblast tissue development. Biotechnol. Bioeng. 70: 606–618.

    Article  CAS  Google Scholar 

  6. Mooney, D.J.; Organ, G.; Vacanti, J.P. and Langer R. (1994) Design and fabrication of biodegradable polymer devices to engineer tubular tissues. Cell Transplant. 3: 203–210.

    CAS  Google Scholar 

  7. Lee, D.W.; Piret, J.M.; Gregory, D.; Haddow, D.J. and Kilbum, D.G. (1992) Polystyrene macroporous bead support for mammalian cell culture. Ann. NY Acad. Sci. 665: 137–145.

    Article  CAS  Google Scholar 

  8. Affolter, D. and Hall, D.O. (1986) Long-term stability of photosynthetic electron transport in polyvinyl foam immobilised bacteria. Photobiochem. Photobiophys. 12: 193–201.

    CAS  Google Scholar 

  9. Borja, R. and Banks, C.J. (1994) Kinetic study of anaerobic digestion of fruit-processing wastewater in immobilized-cell bioreactors. Biotechnol. Appl. Biochem. 20: 79–92.

    CAS  Google Scholar 

  10. Gaffney, A.M.; Markov, S.A. (2001) Utilization of cyanobacteria in photobioreactors for orthophosphate removal from water. Appl. Biochem. Biotechnol. 91–93: 185–193.

    Google Scholar 

  11. Lee, Y.H.; Lee, C.W. and Chang, H.N. (1989) Citric acid production by Aspergillus niger immobilised on polyurethane foam. Appl. Microbiol. Biotechnol. 30: 141–143.

    Article  CAS  Google Scholar 

  12. Oh, Y.S.; Maeng, J. and Kim, S.J. (2000) Use of microorganism-immobilized polyurethane foams to absorb and degrade oil on water surface. Appl. Microbiol. Biotechnol. 54: 428–423.

    Article  Google Scholar 

  13. Niazi, J.H. and Karegoudar, T.B. (2001) Degradation of dimethylphtalate by cells of Bacillus sp. immobilized in calcium alginate and polyurethane foam. J. Environ. Sci. Health Part A Tox. Hazard Subst. Environ. Eng. 36: 1135–1144.

    Article  CAS  Google Scholar 

  14. Fynn, G.H. and Whitmore, T.N. (1982) Colonisation of polyurethane reticulated foam biomass support particles by methanogen species. Biotechnol. Lett. 4: 577.

    Article  CAS  Google Scholar 

  15. Thepenier, C.; Gudin, C. and Thomas, D. (1985) Immobilisation of Porphyridium cruentuin in polyurethane foams for the production of polysaccharides. Biomass 7: 225–240.

    Article  CAS  Google Scholar 

  16. Manohar, S.; Kim, C.K. and Karegoudar, T.B. (2001) Enhanced degradation of naphthalene by immobilization of Pseudoinonas sp. strain NGK1 in polyurethane foam. Appl. Microbiol. Biotechnol. 55: 311–316.

    Article  CAS  Google Scholar 

  17. Bertin, L.; Majone, M.; Di Gioia, D. and Fava, F. (2001) An anaerobic fixed-phase biofilm reactor system for the degradation of low-molecular weight aromatic compounds occurring in the effluents of anaerobic digestors treating olive mill wastewaters. J. Biotechnol. 87: 161–177.

    Article  CAS  Google Scholar 

  18. Lindsey, K.; Yeoman, M.M.; Black, G.M. and Mavituna, F. (1983) A novel method for the immobilisation of plant cells. FEBS Lett. 155: 143–149.

    Article  CAS  Google Scholar 

  19. Mavituna, F.; Park, J.M.; Wilkinson, A.K. and Williams, P.D. (1987) Characteristics of immobilised plant-cell reactors. In: Webb, C. and Mavituna, F. (Eds.) Plant and animal cells, process possibilities. Ellis Harwood, Chichester, UK; pp. 92–115.

    Google Scholar 

  20. Holden, M.A. and Yeoman, M.M. (1987) Optimisation of product yield in immobilised plant cell cultures. In: Moody, G.W. and Baker, P.B. (Eds.) Bioreactors and biotransformations. Elsevier Applied Science Publishers, London, UK; pp. 1–11.

    Google Scholar 

  21. Lazar, A.; Silberstein, L.; Mizrahi, A. and Reuveny, S. (1988) An immobilized hybridoma culture perfusion system for the production of monoclonal antibodies. Cytotechnol. 1: 331–337.

    Article  CAS  Google Scholar 

  22. Muscat, A.; Bettin, A. and Vorlop, K.-D. (1996) Herstellung und Charakterisierung hochporöser und elestischer Silicon-Trägermaterialien mit einer verbesserten Sauerstoffversorgung für immobilisierte Zellen. Chem. Ing. Techn. 68: 584–586.

    Article  CAS  Google Scholar 

  23. Knights, A.J. (1993) Porous silicone rubber: a novel material for a matrix to immobilize microbial, mammalian and plant cells. Proceedings 1. Chem. E. Event.

    Google Scholar 

  24. Looby, D. and Griffiths, B. (1990) Immobilization of animal cells in porous carrier culture. TIBTECH 8: 204–209.

    Article  CAS  Google Scholar 

  25. Cahn, F. (1990) Biomaterials aspects of porous microcarriers for animal cell culture. TIBTECH 8: 131136.

    Google Scholar 

  26. Ohlson, S.; Branscomb, J. and Nilsson, K. (1994) Bead-to-bead transfer of Chinese hamster ovary cells using macroporous microcarriers. Cytotechnol. 14: 67–80.

    Article  CAS  Google Scholar 

  27. Chio, Y.S.; Hong, S.R.; Lee, Y.M.; Song, K.W.; Park, M.H. and Nam, Y.S. (1999) Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluranate sponge. J. Biomed. Mater. Res. 48: 631–639.

    Article  Google Scholar 

  28. Ogbonna, J.C.; Mashima, H. and Tanaka, H. (2001) Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor. Bioresour. Technol. 76: 1–8.

    Article  CAS  Google Scholar 

  29. Monsan, P.; Durand, G. and Navarro, J.-M. (1987) Immobilisation of microbial by adsorption to solid supports. Methods Enzymol. 135: 307–318.

    Article  CAS  Google Scholar 

  30. Opara, C.C. and Mann, J. (1987) Development of ultraporous fired bricks as support for yeast cell immobilization. Biotechnol. Bioeng. 31: 470–475.

    Article  Google Scholar 

  31. Lienhardt, J.; Schripsema, J.; Qureshi, N. and Blaschek, H.P. (2002) Butanol production by Clostridium beijerinckii BA101 in an immobilized cell biofilm reactor: increase in sugar utilization. Appl. Biochem. Biotechnol. 98–100: 591–598.

    Google Scholar 

  32. Demuyakor, B. and Ohta, Y. (1992) Promotive action of ceramics on yeast ethanol production, a,d its relationship to pH, glycerol and ethanol dehydrogenase activity. Appl. Microbiol. Biotechnol. 36: 717–721

    Article  CAS  Google Scholar 

  33. Shan, H. and Obbard, J.P. (2001) Ammonia removal from prawn aquaculture water using immobilized nitrifying bacteria. Appl. Microbiol. Biotechnol. 57: 791–798.

    Article  CAS  Google Scholar 

  34. Kornfield, J; Stephanopoulos, G. and Voecks, G.E. (1986) Oxygen transfer in membrane-ceramic composite materials for immobilized-cell monolithic reactors. Biotechnol. Prog. 2: 98–104.

    Article  CAS  Google Scholar 

  35. Wang, S.-D. and Wang, D.I.C. (1990) Mechanisms for biopolymer accumulation in immobilized Acinetobacter calcoaceticus system. Biotechnol. Bioeng. 36: 402–410.

    Article  CAS  Google Scholar 

  36. Peres, C.M.; Van Aken, B.; Naveau, H. and Agathos, S.N. (1999) Continuous degradation of mixtures of 4–nitrobenzoate and 4–aminobenzoate by immobilized cells of Burkholderia cepacia strain PB4. Appl. Microbiol. Biotechnol. 52: 440–445.

    Article  CAS  Google Scholar 

  37. Anselmo, A.M.; Cabral, J.M.S. and Novais, J.M. (1989) The adsorption of Fusarium flocciferum spores on Celite particles and their use in the degradation of phenol. Appl. Microbiol. Biotechnol. 31: 200–203.

    Article  CAS  Google Scholar 

  38. Chang, J.H.; Chang, Y.K.; Ryu, H.W. and Chang, H.N. (2000) Desulfurization of light gas oil in immobilized-cell systems of Gordon sp. CYKSI and Nocardia sp. CYKS2. FEMS Microbiol. Lett. 182: 309–312.

    CAS  Google Scholar 

  39. Gbewonyo, K. Meier, J. and Wang, D.I.C. (1987) Immobilization of mycelia’ cells on celite. Methods. Enzymol. 135: 318–333.

    Article  Google Scholar 

  40. Kim, C.J.; Chang, Y.K.; Chun, G.T.; Jeong, Y.H. and Lee, S.J. (2001) Continuous culture of immobilized Streptomyces cells for kasugamycin production. Biotechnol. Prog. 17: 453–461.

    Article  CAS  Google Scholar 

  41. Prieto, M.B.; Hidalgo, A.; Rodriguez-Fernandez, C. and Serra, J.L. (2002) Appl. Microbiol. Biotechnol. 58: 853–859.

    Google Scholar 

  42. Baker, E.E.; Prevoznak, R J; Drew, S.W. and Buckland, B.C. (1983) Thienamycin production by Streptomyces cattleya cells immobilized in Celite beads. Dev. Ind. Microbiol. 24: 805–815.

    Google Scholar 

  43. Chun, G.-T. and Agathos, S.N. (1989) Immobilization of Tolypocladium inflatum spores into porous cane beads for cyclosporin production. J. Biotechnol. 9: 237–254.

    Article  CAS  Google Scholar 

  44. Chun, G.-T. and Agathos, S.N. (1991) Comparative studies of physiological and environmental effects on the production of cyclosporine A in suspended and immobilized cells of Tolypocladium inflatum. Biotechnol. Bioeng. 37: 256–265.

    Article  CAS  Google Scholar 

  45. Chun, G.-T. and Agathos, S.N. (1993) Dynamic response of immobilized cells to pulse addition of L-valine in cyclosporine A biosynthesis. J. Biotechnol. 27: 283–295.

    Article  CAS  Google Scholar 

  46. Lee, T.H.; Chun, G.T. and Chang, Y.K. (1997) Development of sporulation/immobilization method and its application for the continuous production of cyclosporin A by Tolypocladium inflatum. Biotechnol. Prog. 13: 546–550.

    Article  CAS  Google Scholar 

  47. Nilsson, K.; Buzsaky, F. and Mosbach, K. (1986) Growth of anchorage-dependent cells on macroporous microcarriers. Bio/Technol. 4: 989–990.

    Article  Google Scholar 

  48. Robinson, D.K. (1987) Ph.D. thesis. Massachusetts Institute of Technology, Cambridge, USA.

    Google Scholar 

  49. Looby, D. and Griffiths, B. (1988) Fixed bed porous glass sphere (porosphere) bioreactors for animal cells. Cytotechnol. 1: 339–346.

    Google Scholar 

  50. Reiter, M.; Blüml G.; Zach, N.; Gaida, T.; Kral, G.; Assadian, A.; Schmatz, C.; Strutzenberger, K.; Hinger, S. and Katinger, H. (1992) Monoclonal antibody production using porous glass bead immobilization technique. Ann. NY Acad. Sci. 665: 146–151.

    Article  CAS  Google Scholar 

  51. Tunceli, A.; Bag, H. and Turker, A.R. (2001) Spectrophotometric determination of some pesticides in water samples after preconcentration with Saccharomyces cerevisiae immobilized on sepiolite. Fresenius J. Anal. Chem. 371: 1134–1138.

    Article  CAS  Google Scholar 

  52. Koutinas, A.A.; Kanellaki, M.; Lykourghiotis, A.; Typas, M.A. and Drainas, C. (1988) Ethanol production by Zymomonas mobilis entrapped in alumina pellets. Appl. Microbiol. Biotechnol. 28: 235–239.

    Article  CAS  Google Scholar 

  53. Atkinson, B.; Black, G.M.; Lewis, P.J.S. and Pinches, A. (1979) Biological particles of given size, shape and density for use in biological reactors. Biotechnol. Bioeng. 21: 193–200.

    Article  Google Scholar 

  54. Black, G.M.; Webb, C.; Matthews, T.M. and Atkinson, B. (1984) Practical reactor systems for yeast cell immobilization using biomass support particles. Biotechnol. Bioeng. 26: 134–141.

    Article  CAS  Google Scholar 

  55. Webb, C.; Fukuda, H. and Atkinson, B. (1986) The production of cellulase in a spouted bed fermenter using cells immobilised in biomass support particles. Biotechnol. Bioeng. 28: 41–50.

    Article  CAS  Google Scholar 

  56. Klein, J. and Ziehr, H. (1990) Immobilization of microbial cells by adsorption. J. Biotechnol. 16: 1–16.

    Article  Google Scholar 

  57. Marshall, K.C.; Stout, R. and Mitchell, R. (1971) Mechanisms of initial events in the sorption of marine bacteria to surfaces. J. Gen. Microbiol. 68: 337–338.

    CAS  Google Scholar 

  58. Characklis, W.G. (1981) Fouling biofilm development: aprocess analysis. Biotechnol. Bioeng. 23: 19231960.

    Google Scholar 

  59. Duddridge, J.E. and Pritchard, A.M. (1982) Factors affecting the adhesion of bacteria to surfaces. Microb. Cor. Proc. Conf., Met. Soc. London, 28–25.

    Google Scholar 

  60. Ellwood, D.C.; Keevil, C.W.; Marsh, P.D.; Brown, C.M. and Wardell, J.N. (1982) Surfaces associated growth. Phil. Trans. R. Soc. London. B, 512–532.

    Google Scholar 

  61. Marshall, K.C. (1985) Mechanisms of bacterial adhesion at solid-water interfaces. In: Savage, D.L. and Fletcher, M. (Eds.) Bacterial Adhesion. Plenum Publishing Corp., New York, N.Y., USA; pp. 133–161.

    Google Scholar 

  62. Mozes, N.; Marchal, F.; Hermesse, M.P.; Van Haecht, J.L.; Reuliaux, L.; Leonard, A.J. and Rouxhet, P.G. (1987) Immobilization of microorganisms by adhesion: interplay of electrostatic and nonelectrostatic interactions. Biotechnol. Bioeng. 30: 439–450.

    Article  CAS  Google Scholar 

  63. Fletcher, M. and Loeb, G.1. (1979) Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl. Environ. Microbiol. 37: 67–72.

    CAS  Google Scholar 

  64. Büsscher, H.J.; Weerkamp, A.H.; van der Mei, H.C.; Van Pelt, A.W.J.; DeJong, H.P. and Arends, J. (1984) Measurements of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl. Environ. Microbiol. 48: 980–983.

    Google Scholar 

  65. Absolom, D.R.; Lamberti, F.V.; Policova, Z.; Zingg, W.; van Oss, C.J. and Neumann, A.W. (1983) Appl. Environ. Microbiol. 46: 90.

    CAS  Google Scholar 

  66. Thonard, P.; Custinne, M. and Paquot, M. (1982) Zeta potential of yeast cells: application in cell immobilization. Enz. Microb. Technol. 4: 191–194.

    Article  Google Scholar 

  67. Mozes, N. and Rouxhet, P.G. (1984) Dehydrogenation of cortisol by Arthrobacter simplex immobilized as supported monolayer. Enzyme Microb. Technol. 6: 497–502.

    CAS  Google Scholar 

  68. Van Haecht, J.L.; Bolipombo, M. and Rouxhet, P.G. (1985) Immobilization of Saccharomyces cerevisiae by adhesion: treatment of cells by Al ions. Biotechnol. Bioeng. 27: 217–224.

    Article  Google Scholar 

  69. Mozes, N. and Rouxhet, P.G. (1985) Metabolic activity of yeast immobilized as supported monolayer. Appl. Microbiol. Biotechnol. 22: 92–97.

    Article  CAS  Google Scholar 

  70. Champluvier, B.; Kamp, B. and Rouxhet, P.G. (1988) Immobilization of 13–galactosidase retained in yeast: adhesion of the cells on a support. Appl. Microbiol. Biotechnol. 27: 464–469.

    CAS  Google Scholar 

  71. Fletcher, M. (1988) Attachment of Pseudomonas fluorescence to glass and influence of electrolytes on bacterium-substratum separation distance. J. Bacteriol. 170: 2027–2030.

    CAS  Google Scholar 

  72. Hattori, R. and Hattori, T. (1985) Adsorptive phenomena involving bacterial cells and an anion exchange resin. J. Gen. Appl. Microbiol. 31: 147–165.

    Article  CAS  Google Scholar 

  73. Bar, R.; Gainer, J.L. and Kirwan, D.J. (1986) Immobilization of Acetobacter acetil on cellulose ion exchangers: adsorption isotherms. Biotechnol. Bioeng. 28: 1166–1171.

    Article  CAS  Google Scholar 

  74. Yoshiota, T. Shimamura, M. (1986) Studies of polystyrene-based ion-exchange fibres. V. Immobilization of microorganisms by adsorption on a novel fibre-form anion-exchanger. Bull. Chem. Soc. Japan 59: 7782.

    Google Scholar 

  75. Glassner, D.A.; Grulke, E.A. and Oriel, P.J. (1989) Characterization of an immobilized biocatalyst system for production of thermostable amylase. Biotechnol. Prog. 5: 31–39.

    Article  CAS  Google Scholar 

  76. Kumakura, M.; Tamada, M.; Kasai, N. and Kaestu, I. (1989) Enhancement of cellulase production by immobilization of Trichoderma reesei cells. Biotechnol. Bioeng. 33: 1358–1362.

    Article  CAS  Google Scholar 

  77. Zhao Xin, L. and Kumakura, M. (1992) Cellulase activity of Trichoderma reesei immobilized on gauze covered with hydrophilic and hydrophobic copolymers. J. Chem. Tech. Biotechnol. 54: 129–133.

    Google Scholar 

  78. Zhao Xin, L. and Kumakura, M. (1993) Immobilization of Trichoderma reesei cells on paper covered by hydrophilic and hydrophobic copolymers generated by irradiation. Enzyme Microb. Technol. 15: 300303.

    Google Scholar 

  79. Zhao Xin, L. and Kumakura, M. (1994) Effect of carrier ionic properties on cellulase productivity by immobilized filamentous Trichoderma reesei. J. Chem. Tech. Biotechnol. 60: 183–187.

    Article  Google Scholar 

  80. Zhao Xin, L. and Kumakura, M. (1994) Characterisation of filamentous cells immobilized with ionic-hydrophobic polymers prepared by a radiation polymerization method. Process Biochem. 29: 651–656.

    Article  CAS  Google Scholar 

  81. Drucker, D.B. (1981) Microbiological applications of gas chromatography, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  82. Frame, K.K. and Hu, W.-S. (1988) A model for density-dependent growth of anchorage-dependent mammalian cells. Biotechnol. Bioeng. 32: 1061–1066.

    Article  CAS  Google Scholar 

  83. Cherry, R.S. and Papoutsakis, E.T. (1989) Modeling of contact-inhibited animal cell growth on flat surfaces and spheres. Biotechnol. Bioeng 33. 300–305.

    Article  CAS  Google Scholar 

  84. Lim, J.H.F. and Davies, G.A. (1990) A stochastic model to simulate the growth of anchorage dependent cells on flat surfaces. Biotechnol. Bioeng. 36: 547–562.

    Google Scholar 

  85. Forestell, S.P.; Milne, B.J.; Kalogerakis, N. and Behie, L.A. (1992) A cellular automaton model for the growth of anchorage-dependent mammalian cells used in vaccine production. Chem. Eng. Sci. 47: 23812386.

    Google Scholar 

  86. Hawboldt, K.A.; Kalogerakis, N. and Behie, L.A. (1994) A cellular automaton model for microcarrier cultures. Biotechnol. Bioeng. 43: 90–100.

    Article  CAS  Google Scholar 

  87. Freshney, R.I. (2000) Biology of cultured cells. In: Culture of animal cells — A manual of basic techniques. Wiley-Liss, New York, USA; pp. 9–18.

    Google Scholar 

  88. Yamada, K.M. and Geiger, B. (1997) Molecular interactions in cell adhesion complexes. Curr. Opin. Cell Biol. 9: 76–85.

    Article  CAS  Google Scholar 

  89. Subramanian, S.V.; Fitzgerald, M.L. and Bernfield, M. (1997) Regulated shedding of syndecan-1 and —4 ectodomains by thrombin and growth factor receptor activation. J. Biol. Chem. 272: 14713–14720.

    Article  CAS  Google Scholar 

  90. Yevdokimova, N. and Fresney, R.I. (1997) Activation of pacrine growth factors by heparan sulphate induced by glucocorticoid in A549 lung carcinoma cells. Brit. J. Cancer 76: 261–289.

    Article  Google Scholar 

  91. Schlessinger, J.; Lax, 1. and Lemmon, M. (1995) Regulation of growth factor activation by proteoglycans: What is the role of the low affinity receptors? Cell 83: 357–360.

    CAS  Google Scholar 

  92. Maroudas, N.G. (1973) Chemical and mechanical requirements for fibroblast adhesion. Nature 244: 253254.

    Google Scholar 

  93. Grinnell, F. (1978) Cellular adhesiveness and extracellular substrata. Int. Rev. Cytol. 53: 65–144.

    Article  CAS  Google Scholar 

  94. Curtis, A.S.G. and Pitts, J.D. (1980) Cell adhesion and cell motility. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  95. Griffiths, J.B. and Riley, P.A. (1985) Cell biology: basic concenpts. In: Spier, R.E. and Griffiths, J.B. (Eds.) Animal Cell Biotechnology. Vol. 1, Academic Press, New York, USA; pp. 17–48.

    Google Scholar 

  96. Ramsden, J.J.; Li, S.-Y.; Prenosil, J.E. and Heinzle, E. (1994) Kinetics of adhesion and spreading of animal cells. Biotechnol. Bioeng. 43: 939–945.

    Article  CAS  Google Scholar 

  97. De Backer, L. (1994) Porous glass as a cell immobilisation matrix for packed bed bioreactors. PhD dissertation, Vrije Universiteit Brussel, Brussels, Belgium.

    Google Scholar 

  98. De Backer, L. (1996) Immobilisation of cells in porous carriers. In: Willaert, R.G.; Baron, G.V. and De Backer, L. (Eds.) Immobilised living cell systems: modelling and experimental methods. John Wiley & Sons, Chichester, UK; pp. 237–254.

    Google Scholar 

  99. Willaert, R.; De Backer, L. and Baron G.V. (1996) Modelling immobilised bioprocesses. In: Wijffels, R.H.; Buitelaar, R.M.; Bucke, C. and Tramper, J. (Eds) Immobilized cells: basics and applications. Elsevier Science, Amsterdam, The Netherlands; pp. 154–161.

    Google Scholar 

  100. Sitton, O.C. and Gaddy, J.L. (1980) Ethanol production in immobilized cell reactor. Biotechnol. Bioeng. 22: 1735–1748.

    Article  CAS  Google Scholar 

  101. Krekeler, C.; Ziehr, H. and Klein, J. (1991) Influence of physicochemical bacterial surface properties on adsorption to inorganic porous supports. Appl. Microbiol. Biotechnol. 35: 484–490.

    Article  CAS  Google Scholar 

  102. Tyagi, R.D.; Gupta, S.K. and Chand, S. (1992) Process engineering studies on continuous ethanol production by immobilized S. cerevisiae. Process Biochem. 27: 23–32.

    Article  CAS  Google Scholar 

  103. Bisping, B. and Rehm, H.J. (1986) Glycerol production by cells of Saccharomyces cerevisiae immobilized in sintered glass. Appl. Microbiol. Biotechnol. 23: 174–179.

    Article  CAS  Google Scholar 

  104. Murdin, A.D.; Thorpe, J.S.; Kirkby, N.; Groves, D.J. and Spier, R.E. (1987) Immobilisation and growth of hybridomas in packed beds. In: Woody, G.W. and Baker, P.B. (Eds.) Bioreactors and Biotransformations. Elsevier, Amsterdam, The Netherlands; pp. 99–110.

    Google Scholar 

  105. De Backer, L. and Baron, G.V. (1993) Effective diffusivity and tortuosity in a porous glass immobilization matrix. Appl. Microbiol. Biotechnol. 39: 281–284.

    Article  Google Scholar 

  106. De Backer, L. and Baron, G.V. (1994) Residence time distribution in a packed bed bioreactor containing porous glass particles: influence of the presence of immobilized cells. J. Chem. Tech. Biotechnol. 59: 297–302.

    Article  Google Scholar 

  107. Willaert, R.G. and Baron, G.V. (1994) The dynamic behaviour of yeast cells immobilised in porous glass studied by membrane mass spectrometry. Appl. Microbiol. Biotechnol. 42: 664–670.

    Article  Google Scholar 

  108. Levenspiel, O. (1972) Chemical reaction engineering. 2nd edition, John Wiley & Sons, New York, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baron, G.V., Willaert, R.G. (2004). Cell Immobilisation in Pre-Formed Porous Matrices. In: Nedović, V., Willaert, R. (eds) Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1638-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6534-6

  • Online ISBN: 978-94-017-1638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics