Skip to main content

Direct Compression — Novel Method for Encapsulation of Probiotic Cells

  • Chapter
Fundamentals of Cell Immobilisation Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 8A))

  • 1180 Accesses

Abstract

Probiotics may be defined as a mono or mixed culture of live microorganisms that applied to man or animal affects beneficially the host by improving the properties of the indigenous microflora [1]. They confer many healthy benefits upon consumption such as suppressing the growth of pathogens, reducing the risk of cancer formation and reducing the serum cholesterol levels of the host [2,3]. Other reported therapeutic or nutritional values of probiotic bacteria include improvement of lactose digestion and immune system as well as ability to synthesize various vitamins and enhancement of bioavailability of many minerals to the host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shortt, C. (1998) Living it up for dinner. Chemistry & Industry: 300–303.

    Google Scholar 

  2. Gomes, A.M.P. and Xavier Malcata, F. (1999) Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends in Food Sci. and Technol. 10: 139–157.

    Google Scholar 

  3. Kailasapathy, K. and Chin, J. (2000) Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp.. Immunology and Cell Biology 78: 80–88.

    Article  CAS  Google Scholar 

  4. Lee, Y.K. and Salminen, S. (1995) The coming of age of probiotics. Trends in Food Sci. and Technol. 6: 241–245.

    Article  Google Scholar 

  5. Conway, P.L.; Gorbach, S.L. and Goldin B.R. (1987) Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Diary Sci. 70 (1): 1–12.

    Article  CAS  Google Scholar 

  6. Favaro Trindade, C.S. and Grosso, C.R.F. (2000) The effect of the immobilisation of Lactobacillus acidphilus and Bifidobacterium lactis in alginate on their tolerance to gastrointestinal secretions. Milchwissenschaft 55 (9): 496–499.

    CAS  Google Scholar 

  7. Sultana, K.; Godward, G.; Reynolds, N.; Arumugaswamy, R.; Peiris, P. and Kailasapathy, K. (2000) Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food Microbiol. 62: 47–55.

    Google Scholar 

  8. Lal, M.; Tiwari, M.P.; Sinha, R.N. and Ranganathan, B. (1978) Activity of the freeze-dried Streptococcus lactis sub sp Diacetilactic DRC in gelatin capsules and strip packed tablets during storage. Egyptian J. Diary Sci. 6: 33–37.

    Google Scholar 

  9. Lauland, S. (1994) Commercial aspects of formulation, production and marketing of probiotic products. In: Gibson, S.A.W. (Ed.) Human Health: The contribution of microorganisms. Springer-Verlag, London; pp. 159–173.

    Chapter  Google Scholar 

  10. Kim, H.S.; Kamara, B.J.; Good, I.C. and Enders, G.L. Jr. (1998) Method for the preparation of stabile microencapsulated lactic acid bacteria. J. Ind. Microbiol. 3: 253–257.

    Google Scholar 

  11. Yokota, T.; Sato, T.; Uemitsu, N. and Kitabatake, K. (1990) Development of enteric coated tablets containing lactic acid bacteria. In: Proceedings of the International Bifidobacterium Conference, Tokyo (Japan), September 12–13 1990; Japan Bifidus Foundation, Tokyo; p. 53

    Google Scholar 

  12. Appelgren, C. and Eskilson, C. (1990) A novel method for the granulation and coating of pharmacologically active substances. Drug Development and Industrial Pharmacy 16 (15): 2345–2351.

    Article  CAS  Google Scholar 

  13. Champagne, C.P.; Morin, N.; Couture, R.; Gagnon, C.; Jelen, P. and Lacroix, C. (1992) The potential of immobilized cell technology to produce freeze-dried, phage-protected cultures of Lactococcus lactis. Food Research International 25: 419–427.

    Article  Google Scholar 

  14. Thoma, K. and Bechtold, K. (1992) Enteric coated hard gelatin capsules. Capsugel Library: 1–16.

    Google Scholar 

  15. Cole, G.C. (1995) Environmental considerations: treatment of exhaust gases from film-coating processes. In: Cole, G.C. (Ed.) Pharmaceutical coating. Taylor & Francis Ltd.; pp. 240–247.

    Google Scholar 

  16. Wesdyk, R.; Joshi, Y.M.; De Vincentis, J.; Newman, A.W. and Jain, N.B. (1993) Factors affecting differences in film thickness of beads coated in fluidized bed units. Int. J. Pharmaceutics 93: 101–109.

    Google Scholar 

  17. Porter, S.C. and Bruno, C.H. (1990) Coating of Pharmaceutical solid-dosage form. In: Lieberman H.A. et al. (Eds.) Pharmaceutical dosage forms: Tablets. Volume 3. Marcel Dekker, US; pp. 77–158.

    Google Scholar 

  18. Barthelemy, P.; Laforet, J.P.; Farah, N. and Joachim, J. (1999) Compritol0 888 ATO: an innovative hot-melt coating agent for prolonged-release drug formulations. Eur. J. Pharmaceutics and Biopharmaceutics 47: 87–90.

    Google Scholar 

  19. Ashford, M.; Fell, J.; Attwood, D.; Sharma, H. and Woodhead, P. (1993) An evaluation of pectin as a carrier for drug targeting to the colon. J. Controlled Release 26: 213–220.

    Article  CAS  Google Scholar 

  20. Ashford, M.; Fell, J.; Attwood, D.; Sharma, H. and Woodhead, P. (1994) Studies on pectin formulations for colonic drug delivery. J. Controlled Release 30: 225–232.

    Article  CAS  Google Scholar 

  21. Semde, R.; Amighi, K.; Devleeschouwer, M.J. and Moes, A.J. (1999) In vitro evaluation of pectin HM/ethylcellulose compression-coated formulations intended for colonic drug delivery. S.T.P. Pharma Sciences 9(6): 561–565.

    Google Scholar 

  22. Krishnaiah, Y.S.R.; Satyanarayana, S.; Rama Prasad, Y.V. and Narashimha, R.S. (1998) Evaluation of guar gum as a compression coat for drug targeting to colon. Int. J. Pharmaceutics 171: 137–146.

    Google Scholar 

  23. Krishnaiah, Y.S.; Satyanarayana, S. and Rama Prasad, Y.V. (1999) Studies of guar gum compression-coated 5–aminosalicylic acid tablets for colon-specific drug delivery. Drug Develop. Ind. Pharmacy 25 (5): 651–657.

    Article  CAS  Google Scholar 

  24. Kaneko, K.; Kanada K.; Miyagi, M.; Saito, N.; Ozeki, T.; Yuasa, H. and Kanaya, Y. (1998) Formation of water-insoluble gel in dry-coated tablets for the controlled release of theophylline. Chem. and Pharmaceutical Bulletin 46 (4): 728–729.

    Article  CAS  Google Scholar 

  25. Couture, R.; Gagne D. and Champagne, C.P. (1991) Effet de divers additifs sur la survie a la lyophilisation de Lactococcus lactis. Canadian Institute of Food Sci. Technol. 24 (5): 224–227.

    Google Scholar 

  26. Johnson, M.; Ray, B. and Speck, M.L. (1984) Freeze-injury in cell wall and its repair in Lactobacillus acidophilus. Cryo-letters 5: 171–176.

    CAS  Google Scholar 

  27. Paronen, P. and likka, J (1996) Porosity-pressure functions. In: Alderborn, G. and Nystrom, C. (Eds.) Pharmaceutical Powder Compaction Technology. Marcel Dekker, New York; pp. 55–97.

    Google Scholar 

  28. Kim, H.; Venkatesh, G. and Fassihi, R. (1998) Compactibility characterization of granular pectin for tableting operation using a compaction simulator. Int. J. Pharmaceutics 161: 149–159.

    Google Scholar 

  29. Takeuchi, H.; Yasuji, T.; Hino, T.; Yamamoto, H. and Kawashima, Y. (1998) Spray-dried composite particles of lactose and sodium alginate for direct tabletting and controlled releasing. Int. J. Pharmaceutics 174: 91–100.

    Google Scholar 

  30. Yanagita, T.; Mild, T.; Sakai, T. and Horikoshi, I. (1978) Microbiological studies on drugs and their raw materials. 1. Experiments on the reduction of microbial contaminants in tablets during processing. Chem. and Pharmaceutical Bulletin 26: 185–190.

    Google Scholar 

  31. Monk, G.W.; Elbert, M.L.; Stevens, C.L. and McCafferey, P.A. (1956) The effect of water on the death rate of Serratia marcescens. J. Bacteriology 72: 368–372.

    CAS  Google Scholar 

  32. Leach, R.H. and Scott, W.J. (1959) The influence of rehydration on the viability of dried microorganisms. J. General Microbiol. 21: 295–307.

    CAS  Google Scholar 

  33. Hodsdon, A.C.; Mitchell, J.R.; Davies, M.C. and Melia, C.D. (1995) Structure and behaviour in hydrophilic matrix sustained release dosage forms: 3. The influence of pH on the sustained-release performance and internal gel structure of sodium alginate matrices. J. Controlled Release 33: 143–152.

    Google Scholar 

  34. Poirier, 1.; Marechal, P.A.; Richard, S. and Gervais, P. (1999) Saccharomyces serevisiae viability is strongly dependant on rehydration kinetics and the temperature of dried cells. J. Appl. Microbiol. 86: 87–92.

    Google Scholar 

  35. De Valdez, G.F.; Giori, G.S.; Ruis Holgado, A.P. and Oliver, G. (1985) Effect of drying medium on residual moisture content and viability of freeze-dried lactic acid bacteria. Appl. and Environmental Microbiol. 49 (2): 413–415.

    Google Scholar 

  36. Kosanke, J.W.; Osburn, R.M.; Shuppe, G.I. and Smith, R.S. (1992) Slow rehydration improves the recovery of dried bacterial populations. Canadian J. Microbiol. 38: 520–525.

    Google Scholar 

  37. Kearney, L.; Upton, M. and McLoughlin, A. (1990) Enhancing the viability of Lactobacillus plantarum inoculum by immobilizing the cells in calcium-alginate beads incorporating cryoprotectants. Appl. Environmental Microbiol. 56: 3112–3116.

    Google Scholar 

  38. Monk, G.W. and McCafferey, P.A. (1957) The effect of sorbed water on the death rate of washed Serratia marcescens. J. Bacteriology 73: 85–88.

    CAS  Google Scholar 

  39. Reddy, S.M.; Sinha, V.R. and Reddy, D.S. (1999). Novel oral colon-specific drug delivery systems for pharmacotherapy of peptide and nonpeptide drugs. Drugs of Today 35 (7): 537–580.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chan, E.S., Zhang, Z. (2004). Direct Compression — Novel Method for Encapsulation of Probiotic Cells. In: Nedović, V., Willaert, R. (eds) Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1638-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6534-6

  • Online ISBN: 978-94-017-1638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics