Skip to main content

Biomaterials for Cell Immobilization

A look at carrier design

  • Chapter
Fundamentals of Cell Immobilisation Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 8A))

Abstract

There are several major biomedical applications where the transplantation of immobilized cells is being employed to restore, maintain or improve tissue function. These strategies can be split into two main categories: the replacement of biochemical function only or the replacement of structurally functional tissue. As only chemical communication (e.g., diffusion of molecules) is required in the former, it is possible to deliver cells encapsulated in a nanoporous, immunoisolatory polymer membrane. The membranes is constructed such that there are pores large enough to allow for nutrients, waste and the bioactive factor to diffuse but not large enough as to allow immune cells to attack the cells within [1]. This strategy has mainly been employed to temporarily or permanently replace biochemical functions of the liver [2,3], pancreas [4,5], and provide local protein delivery in neurological disorders [6]. The second major strategy involves entrapping cells on a micro or macroporous polymer scaffold and promoting the formation of a new tissue that is structurally and functionally integrated with the surrounding tissue. The scaffold is constructed with a biocompatible material that degrades over time to leave only the integrated tissue in its place. Researchers have attempted to use this strategy with a variety of tissues, including skin [7,8,9], liver [10,11,12], pancreas [13], cornea [14], blood vessels [15,16], cartilage [17,18], heart [19], and bone [20,21].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langer, R. (2000) Tissue Engineering: Status and Challenges. E-biomed. 1: 5–6.

    Google Scholar 

  2. Elcin, Y.M.; Dixit, V.; Lwein, K. and Gitnick, G. (1999) Xenotransplantation of fetal porcine hepatocytes in rats using a tissue engineering approach. Artif. Organs 23 (2): 146–152.

    Article  CAS  Google Scholar 

  3. Dixit, V. (1995) Transplantation of isolated hepatocytes and their role in extrahepatic life support systems. Scand. J. Gastroenterol. Suppl. 208: 101–110.

    Google Scholar 

  4. Lanza, R.P.; Sullivan, S.J. and Chick, W.L. (1992) Islet transplantation with immunoisolation. Diabetes. 41: 1503–1510.

    Article  CAS  Google Scholar 

  5. O’Shea, G.M.; Goosen, M.F. and Sun, A.M. (1984) Prolonged survival of transplanted islets of Langerhans encapsulated in a biocompatible membrane. Biochim. Biophys. Acta 804 (1): 133–136.

    Article  Google Scholar 

  6. Sagen, J.; Bruhn, S.L.; Rein, D.H.; Li, R.H. and Carpenter, M.K. (1999) Transplantation of encapsulated cells into the central nervous system. In: Kuhtreiber, W.M.; Lanza, R.P. and Chick, W.L. (Eds.) Cell Encapsulation Technology and Therapeutics. Birkhauser, Boston; pp. 351–378.

    Chapter  Google Scholar 

  7. Hansbrough, J.F.; Cooper, M.L.; Cohen, R.; Spielvogel, R.; Greenleaf, G.; Bartel, R.L. and Naughton, G. (1992) Evaluation of a biodegradable matrix containing cultured human fibroblasts as a dermal replacement beneath meshed skin grafts on athymic mice. Surgery. 111 (4): 438–446.

    CAS  Google Scholar 

  8. Ma, J.; Wang, H.; He, B. and Chen, J. (2001) A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 22 (4): 331–336.

    Article  CAS  Google Scholar 

  9. Galassi, G.; Brun, P.; Radice, M.; Cortivo, R.; Zanon, G.F.; Genovese, P. and Abatangelo, G. (2000) In vitro reconstructed dermis implanted in human wounds: degradation studies of the HA-based supporting scaffold. Biomaterials 21(21) 2183–2191.

    Google Scholar 

  10. Watanabe, F.D.; Mullon, C.J.; Hewitt, W.R.; Arkadopoulos, N.; Kahaku, E.; Eguchi, S.; Khalili, T.; Arnaout, W.; Shackleton, C.R.; Rozga, J.; Solomon, B. and Demetriou, AA. (1997) Clinical experience with a bioartificial liver in the treatment of severe liver failure. A phase 1 clinical trial. Ann Surg 225 (5): 484–494.

    Article  CAS  Google Scholar 

  11. Cima, L.G.; Vacanti, J.P.; Vacanti, C.; Ingber, D.; Mooney, D. and Langer, R. (1991) Tissue engineering by cell transplantation using degradable polymer substrates. J. Biomech. Eng. 113 (2): 143–151.

    Article  CAS  Google Scholar 

  12. Kim, S.S.; Utsunomiya, H.; Koski, J.A.; Wu, B.M.; Cima, M.J.; Sohn, J.; Mukai, K.; Griffith, L.G. and Vacanti, J.P. (1998) Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels Ann. Surg. 228 (1): 8–13.

    Article  CAS  Google Scholar 

  13. Sullivan, S.J.; Maki, T.; Borland, K.M.; Mahoney, M.D.; Solomon, B.A.; Muller, T.E.; Monaco, A.P. and Chick, W.L. (1991) Biohybrid artificial pancreas: long-term implantation studies in diabetic, pancreatectomized dogs. Science 252 (5006): 718–721.

    Article  CAS  Google Scholar 

  14. Kobayashi, H.; Ikada, Y.; Moritera, T.; Ogura, Y. and Honda, Y. (1991) Collagen-immobilized hydrogel as a material for lamellar keratoplasty. J. Appl. Biomater. 2 (4): 261–267.

    Article  CAS  Google Scholar 

  15. Niklason, L.E.; Gao, J.; Abbott, W.M.; Hirschi, K.K.; Houser, S.; Marini, R.; Langer, R. (1999) Functional arteries grown in vitro. Science 284 (5413): 489–493.

    Article  CAS  Google Scholar 

  16. Miwa, H.; Matsuda, T. and Iida, F. (1993) Development of a hierarchically structured hybrid vascular graft biomimicking natural arteries. ASAIO J. 39 (3): M273–277.

    Article  CAS  Google Scholar 

  17. Metters, A.T.; Anseth, K.S. and Bowman, C.N. (1999) Fundamental studies of biodegradable hydrogels as cartilage replacement materials. Biomed. Sci. Instrum 35 . 33–38.

    Google Scholar 

  18. Vacanti, C.A.; Langer, R.; Schloo, B. and Vacanti, J.P. (1991) Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast. Reconstru. Surg. 88 (5): 753–759.

    Article  CAS  Google Scholar 

  19. Sodian, R.; Sperling, J.S.; Martin, D.P.; Stock, U.; Mayer, J.E., Jr. and Vacanti, J.P. (1999) Tissue engineering of a trileaflet heart valve-early in vitro experiences with a combined polymer. Tissue Eng. 5 (5): 489–494.

    Article  CAS  Google Scholar 

  20. Crane, G.M.; Ishaug, S.L.; Mikos, A.G. (1995) Bone tissue engineering. Nat. Med. 1 (12): 1322–1324.

    Article  CAS  Google Scholar 

  21. Solchaga, L.A.; Dennis, J.E.; Goldberg, V.M. and Caplan, A.I. (1999) Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J. Orthop. Res. 17 (2): 205–213.

    Article  CAS  Google Scholar 

  22. Brittberg, M.; Lindahl, A.; Nilsson, A.; Ohlsson, C.; Isaksson, O. and Peterson, L. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331 (14): 889–895.

    Article  CAS  Google Scholar 

  23. Auger, F.A.; Pouliot, R.; Tremblay, N.; Guignard, R.; Noel, P.; Juhasz, J.; Germain, L. and Goulet, F. (2000) Multistep production of bioengineered skin substitutes: sequential modulation of culture conditions. In Vitro Cell Dev. Biol. Anim. 36 (2): 96–103.

    Article  CAS  Google Scholar 

  24. Hardin-Young, J.; Teumer, J.; Ross, R.N. and Parenteau, N.L. (2000) Approaches to transplanting engineered cells and tissues. In: Lanza, R.P.; Langer, R. and Vacanti, J. (Eds.) Principles of Tissue Engineering. Academic Press, San Diego; pp. 281–292.

    Chapter  Google Scholar 

  25. MacKay, S.M.; Funke, A.J.; Buffington, D.A. and Humes, H.D. (1998) Tissue engineering of a bioartificial renal tubule. ASAIO J. 44 (3): 179–183.

    Article  CAS  Google Scholar 

  26. Wandrey, C. and Vidal, D.S. (2001) Purificaiton of polymeric biomaterials. Ann. N.Y. Acad. Sci. 944: 187–198.

    Google Scholar 

  27. Rozga, J. and Demetriou, A.A. (1995) Artificial liver. Evolution and future perspectives. ASAIO J. 41 (4): 831–837.

    CAS  Google Scholar 

  28. Khalil, M.; Shariat-Panahi, A.; Tootle, R.; Ryder, T.; McCloskey, P.; Roberts, E.; Hodgson, H. and Selden, C. (2001) Human hepatocyte cell lines proliferating as cohesive spheroid colonies in alginate markedly upregulate both synthetic and detoxificatory liver function. J. Hepatol. 34 (1): 68–77.

    Article  CAS  Google Scholar 

  29. Rihova, B. (2000) Immunocompatibility and biocompatibility of cell delivery systems. Adv. Drug Deliv. Rev. 42 (1–2) 65–80.

    CAS  Google Scholar 

  30. Hui, T.; Rozga, J. and Demetriou, A.A. (2001) Bioartificial liver support. J. Hepatobiliary Pancreat. Surg. 8 (1): 1–15.

    Article  CAS  Google Scholar 

  31. Zielinski, B.A. and Lysaght, M.J. (2000) Immunoisolation. In: Lanza, R.P.; Langer, R. and Vacanti, J. (Eds.) Principles of Tissue Engineering. Academic Press, San Diego; pp. 321–330.

    Chapter  Google Scholar 

  32. Langer, R. (2000) Tissue Engineering. Mol. Ther. 1 (1): 12–15.

    Article  CAS  Google Scholar 

  33. Sagen, J.; Hama, A.T.; Winn, S.R. et al.,(1993) Pain reduction by spinal implantation of xenogeneic chromaffin cells immunologically-isolated in polymer capsules. Neurosci. Abstracts. 19: 234.

    Google Scholar 

  34. Joseph, J.M.; Goddard, M.B.; Mills, J.; Padrun, V.; Zum, A.; Zielinski, B.; Favre, J.; Gardaz, J.P.; Mosimann, F.; Sagen, J.; Christenson, L. and Aebischer, P. (1994) Transplantation of encapsulated bovine chromaffin cells in the sheep subarachnoid space: a preclinical study for the treatment of cancer pain. Cell Transplant. 3 (5): 355–364.

    CAS  Google Scholar 

  35. Aebischer, P.; Russell, P.C.; Christenson, L.; Panol, G.; Monchik, J.M. and Galletti, P.M. (1986) A bioartificial parathyroid. ASAIO Trans. 32 (1): 134–137.

    Article  CAS  Google Scholar 

  36. Chang, P.L.; Shen, N. and Westcott, A.J. (1993) Delivery of recombinant gene products with microencapsulated cells in vivo. Hum. Gene Ther. 4 (4): 433–440.

    Article  CAS  Google Scholar 

  37. Koo, J. and Chang, T.M. (1993) Secretion of erythropoietin from microencapsulated rat kidney cells: preliminary results. Int. J. Artif. Organs 16 (7): 557–560.

    CAS  Google Scholar 

  38. Rinsch, C.; Regulier, E.; Deglon, N.; Dalle, B.; Beuzard, Y. and Aebischer, P. (1997) A gene therapy approach to regulated delivery of erythropoietin as a function of oxygen tension. Hum. Gene Ther. 8 (16): 1881–1889.

    Article  CAS  Google Scholar 

  39. Colton, C.K. (1995) Implantable biohybrid artificial organs. Cell Transplant. 4 (4): 415–436.

    Article  CAS  Google Scholar 

  40. Brauker, J.; Frost, G.H.; Dwarki, V.; Nijjar, T.; Chin, R.; Carr-Brendel, V.; Jasunas, C.; Hodgett, D.; Stone, W.; Cohen, L.K. and Johnson, R.C. (1998) Sustained expression of high levels of human factor IX from human cells implanted within an immunoisolation device into athymic rodents. Hum. Gene Ther. 9 (6): 879–888.

    Article  CAS  Google Scholar 

  41. Mullon, C. and Solomon, B.A. (2000) HepatAssist liver support system. In: Lanza, R.P., Langer, R. and Vacanti, J. Principles of Tissue Engineering, Academic Press, San Deigo; pp 553–558.

    Book  Google Scholar 

  42. Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K. and Watson, J.D. (1989) Molecular Biology of the Cell. Garland Publishing Inc., New York, New York.

    Google Scholar 

  43. Lee, M.K. and Bae, Y.H. (2000) Cell transplantation for endocrine disorders. Adv. Drug Deliv. Rev. 42 (1–2): 103–120.

    CAS  Google Scholar 

  44. Wang, T.G. (1999) Polymer membranes for cell encapsulation. In: Kuhtreiber, W.M.; Lanza, R.P. and Chick, W.L. (Eds.) Cell Encapsulation Technology and Therapeutics. Birkhauser, Boston; pp. 29–39.

    Chapter  Google Scholar 

  45. Iwata, H.; Park, G. and Ikada, Y. (1998) A model for oxygen transport in microencapsulated islets. In Thomson, R.C.; Mooney, D.J.; Healy, K.E.; Ikada, Y. and Mikos, A.G. (Eds.) Biomaterials Regulating Cell Function and Tissue Development. ( 530 ) MRS Symposium Preceedings, MRS, Warrendale; pp. 19–24.

    Google Scholar 

  46. Uludag, H.; De Vos, P. and Tresco, P.A. (2000) Technology of mammalian cell encapsulation. Adv. Drug Deliv. Rev. 42 (1–2) 29–64.

    CAS  Google Scholar 

  47. Geller, R.L.; Loudovaris, T.; Neuenfeldt, S.; Johnson, R.C. and Brauker, J.H. (1997) Use of an immunoisolation device for cell transplantation and tumor immunotherapy. Ann. N.Y. Acad. Science 831: 438–451.

    Google Scholar 

  48. Ezzell, C. (1995) Tissue Engineering and the Human Body Shop: Encapsulated-Cell Transplants Enter the Clinic. J. NIH Res. 7: 47–51.

    Google Scholar 

  49. Lanza, R.P.; Jackson, R.; Sullivan, A.; Ringeling, J.; McGrath, C.; Kuhtreiber, W. and Chick, W.L. (1999) Xenotransplantation of cells using biodegradable microcapsules. Transplantation 67 (8) 1105–1111.

    Article  CAS  Google Scholar 

  50. Aebischer, P.; Buchser, E.; Joseph, J.M.; Favre, J.; de Tribolet, N.; Lysaght, M.; Rudnick, S. and Goddard, M. (1994) Transplantation in humans of encapsulated xenogeneic cells without immunosuppression. A preliminary report. Transplantation 58 (11): 1275–1277.

    Article  CAS  Google Scholar 

  51. Zielinski, B.A. and Aebischer, P. (1994) Chtiosan as a matrix for mammalian cell encapsulation. Biomaterials 15 (13): 1049–1056.

    Article  CAS  Google Scholar 

  52. Suh, J.K. and Matthew, H.W. (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21 (24): 2589–2598.

    Article  CAS  Google Scholar 

  53. Shea, L.D.; Wang, D.; Franceschi, R.T. and Mooney, D.J. (2000) Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Tissue Eng. 6 (6): 605–617.

    Article  CAS  Google Scholar 

  54. Mann, B.K. and West J.L. (2001) Tissue engineering in the cardiovascular system: progress toward a tissue engineered heart. Anat Rec. 263 (4): 367–371.

    Article  CAS  Google Scholar 

  55. Wildevuur, C.R.; van der Lei, B. and Schakenraad, J.M. (1987) Basic aspects of the regeneration of small-calibre neoarteries in biodegradable vascular grafts in rats. Biomaterials 8 (6): 418–422.

    Article  CAS  Google Scholar 

  56. Mooney, D.J. and Langer, R.S. (2000) Engineering Biomaterials for Tissue Engineering: The 10–100 micron size scale. In: Bronzino, J.D. (Ed.) The Biomedical Engineeing Handbook. CRC Press LLC; p. 112.

    Google Scholar 

  57. Agrawal, C.M. and Ray, R. B. (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 55 (2): 141–150.

    Article  CAS  Google Scholar 

  58. Kim, B.S.; Nikolovski, J.; Bonadio, J. and Mooney, D.J. (1999) Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotechnol. 17 (10): 979–983.

    Article  CAS  Google Scholar 

  59. Ziegler, T.; Alexander, R.W. and Nerem, R.M. (1995) An endothelial cell-smooth muscle cell co-culture model for use in the investigation of flow effects on vascular biology. Ann. Biomed. Eng. 23 (3): 216–225.

    Article  CAS  Google Scholar 

  60. Hunter, C.J.; Imler, S.M.; Malaviya, P.; Nerem, R.M. and Levenston, M.E. (2000) Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials 23 (4): 1249–1259.

    Article  Google Scholar 

  61. Niklason, L.E. and Langer, R. S. (1997) Advances in tissue engineering of blood vessels and other tissues. Transpl. Immunol. 5 (4): 303–306.

    Article  CAS  Google Scholar 

  62. Carver, S.E. and Heath, C.A. (1999) Influence of intermittent pressure, fluid flow, and mixing on the regenerative properties of articular chondrocytes. Biotechnol. Bioeng. 65 (3): 274–281.

    Article  CAS  Google Scholar 

  63. Andriano, K.P.; Tabata, Y.; Ikada, Y. and Heller, J. (1999) In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. J. Biomed. Mater. Res. 48(5): 602–612.

    Google Scholar 

  64. lordanskii, A.L.; Rudakova, T.E. and Zaikov, G.E. (1994) Interaction of Polymers with Bioactive and Corrosive Media. In series: New Concepts in Polymer Science, VSP, Utrecht.

    Google Scholar 

  65. Hubbell, J.A. (1999) Bioactive Biomaterials. Cuir. Opin. Biotechnol. 10 (2): 123–129.

    Article  CAS  Google Scholar 

  66. Hem, D.L. and Hubbell, J.A. (1998) Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 39 (2): 266–276.

    Article  Google Scholar 

  67. Alsberg, E.; Anderson, K.W.; Albeiruti, A.; Franceschi, R.T. and Mooney, D.J. (2000) Cell-interactive alginate hydrogels for bone tissue engineering. J. Dent. Res. 80 (11): 2025–2029.

    Google Scholar 

  68. Cook, A.D.; Hrkach, J.S.; Gao, N.N.; Johnson, I.M.; Pajvani, U.B.; Cannizzaro, S.M. and Langer, R. (1997) Characterization and development of ROD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J. Biomed. Mater. Res. 35 (4): 513–523.

    Article  CAS  Google Scholar 

  69. Yu, X.; Dillon, G.P. and Bellamkonda, R.B. (1999) A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension. Tissue Eng. 5 (4): 291–304.

    Article  CAS  Google Scholar 

  70. Ito, Y.; Chen, G. and Imanishi, Y. (1998) Artificial juxtacrine stimulation for tissue engineering. J. Biomater. Sci. Polym. Ed. 9(8): 879–890.

    Google Scholar 

  71. Han, S.; Mahato, R.I.; Sung, Y.K. and Kim, S.W. (2000) Development of biomaterials for gene thereapy. Mol. Ther. 2 (4): 302–317.

    Article  CAS  Google Scholar 

  72. Rosenblatt, J.; Devereux, B. and Wallace, D.G. (1994) Injectable collagen as a pH-sensitive hydrogel. Biomaterials 15 (12): 985–995.

    Article  CAS  Google Scholar 

  73. Senuma, Y.; Franceschin, S.; Hilborn, J.G.; Tissieres, P.; Bisson, I. and Frey, P. (2000) Bioresorbable microspheres by spinning disk atomization as injectable cell carrier: from preparation to in vitro evaluation. Biomaterials 21 (11): 1135–1144.

    Article  CAS  Google Scholar 

  74. Chevallay, B. and Herbage, D. (2000) Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med. Biol. Eng. Comput. 38 (2): 211–218.

    Article  CAS  Google Scholar 

  75. Roche, S.; Ronziere, M.C.; Herbage, D. and Freyria, A.M. (2001) Native and DPPA cross-linked collagen sponges seeded with fetal bovine epiphyseal chondrocytes used for cartilage tissue engineering. Biomaterials 22 (1): 9–18.

    Article  CAS  Google Scholar 

  76. Lee, C.H.; Singla, A. and Lee, Y. (2001) Biomedical applications of collagen. Int. J. Pharm. 221 (1–2): 122.

    Google Scholar 

  77. Yannas, I.V.; Lee, E.; Orgill, D.P.; Skrabut, E.M. and Murphy, G.F. (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc. Natl. Acad. Sci. USA 86 (3): 933–937.

    Article  CAS  Google Scholar 

  78. Yamada, N.; Uchinuma, E. and Kuroyanagi, Y. (1999) Clinical evaluation of an allogeneic cultured dermal substitute composed of fibroblasts within a spongy collagen matrix. Scand. J. Plast. Reconstr. Surg. Han. Surg. 33 (2): 147–154.

    Article  CAS  Google Scholar 

  79. Nimni, M.E.; Bernick, S.; Cheung, D.T.; Ertl, D.C.; Nishimoto, S.K.; Paule, W.J.; Salka, C. and Strates, B.S. (1988) Biochemical differences between dystrophic calcification of cross-linked collagen implants and mineralization during bone induction. Calcif. Tiddue Int. 42 (5): 313–320.

    Article  CAS  Google Scholar 

  80. Murata, M.; Huang, B. Z.; Shibata, T.; Imai, S.; Nagai, N. and Arisue, M. (1999) Bone augmentation by recombinant human BMP-2 and collagen on adult rat parietal bone. Int. J. Oral Maxillofac. Surg. 28 (3): 232–237.

    Article  CAS  Google Scholar 

  81. Ratcliffe, A. (2000) Tissue engineering of vascular grafts. Matrix Biol. 19 (4): 353–357.

    Article  CAS  Google Scholar 

  82. Butler, D.L. and Awad, H.A. (1999) Perspectives on cell and collagen composites for tendon repair. Clin. Orthop. 367 Suppl: S324–332.

    Google Scholar 

  83. Shapiro, L. and Cohen, S. (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18 (8): 583–590.

    Article  CAS  Google Scholar 

  84. Matsumoto, T.; Kawai, M. and Masuda, T. (1992) influence of concentration and mannuronate/guluronate [correction of gluronate] ratio on steady flow properties of alginate aqueous systems. Biorheology 29(4): 411–417.

    Google Scholar 

  85. Eiselt, P.; Lee, K.Y. and Mooney, D.J. (1999) Rigidity of two-component hydrogels prepared from alginate andpoly(ethylene glycol)-diamines. Macromolecules 32 (17): 5561–5566.

    Article  CAS  Google Scholar 

  86. Lee, K.Y.; Rowley, J.A; Eiselt, P.; Moy, E.M.; Bouhadir, K.H. and Mooney, D.J. (2000) Controlling mechanical and swelling properites of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules 33 (11): 4291–4294.

    Article  CAS  Google Scholar 

  87. Lee, K.Y. and Mooney, D.J. (2001) Hydrogels for tissue engineering. Chem. Rev. 101 (7): 1869–1879.

    Article  CAS  Google Scholar 

  88. Smetana, K., Jr. (1993) Cell biology of hydrogels. Biomaterials 14 (14): 1046–1050.

    Article  CAS  Google Scholar 

  89. Rowley, J.A. and Mooney, D.J. (2002) Alginate type and RGD density control myoblast phenotype. J. Biomed. Mater. Res. 60 (2): 217–223.

    Article  CAS  Google Scholar 

  90. Paige, K.T.; Cima, L.G.; Yaremchuk, M.J.; Vacanti, J.P. and Vacanti, C.A. (1995) Injectable cartilage. Plast. Reconstr. Surg. 96 (6): 1390–1400.

    Article  CAS  Google Scholar 

  91. Gutowska, A.; Jeong, B. and Jasionowski, M. (2001) Injectable gels for tissue engineering. Anat. Rec. 263 (4): 342–349.

    Article  CAS  Google Scholar 

  92. Pouyani, T. and Prestwich, G.D. (1994) Functionalized derivatives of hyaluronic acid oligosaccharides: drug carriers and novel biomaterials. Bioconjug. Chem. 5 (4): 339–347.

    Article  CAS  Google Scholar 

  93. Afify, A.M.; Stern, M.; Guntenhoner, M. and Stern, R. (1993) Purification and characterization of human serum hyaluronidase. Arch. Biochem. Biophys. 305 (2): 434–441.

    Article  CAS  Google Scholar 

  94. Radice, M.; Brun, P.; Cortivo, R.; Scapinelli, R.; Battaliard, C. and Abatangelo, G. (2000) Hyaluronanbased biopolymers as delivery vehicles for bone-marrow-derived mesenchymal progenitors. J. Biomed. Mater. Res. 50 (2): 101–109.

    Article  CAS  Google Scholar 

  95. Liu, L.S.; Thompson, A.Y.; Heidaran, M.A.; Poser, J.W. and Spiro, R.C. (1999) An osteoconductive collagen/hyaluronate matrix for bone regeneration. Biomaterials 20 (12) 1097–1108.

    Article  CAS  Google Scholar 

  96. Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M.D.; Hoemann, C.D.; Leroux, J.C.; Atkinson, B.L.; Binette, F. and Selmani, A. (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21 (21): 2155–2161.

    Article  CAS  Google Scholar 

  97. Monteiro, O.A., Jr. and Airoldi, C. (1999) Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. Int. J. Biol. Macromol. 26 (2–3): 119–128.

    Article  CAS  Google Scholar 

  98. Varum, K.M.; Myhr, M.M.; Hjerde, R.J. and Smidsrod, O. (1997) In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr. Res. 299(1–2): 99–101.

    Google Scholar 

  99. Aiedeh, K.; Gianasi, E.; Orienti, 1. and Zecchi, V. (1997) Chitosan microcapsules as controlled release systems for insulin. J. Microencapsul. 14 (5): 567–576.

    CAS  Google Scholar 

  100. Muzzarelli, R.; Baldassarre, V.; Conti, F.; Ferrara, P.; Biagini, G.; Gazzanelli, G. and Vasi, V. (1988) Biological activity of chitosan: ultrastructural study. Biomaterials 9 (3): 247–252.

    Article  CAS  Google Scholar 

  101. Tan, W.; Krishnaraj, R. and Desai, T.A. (2001) Evaluation of nanostructured composite collagen-chitosan matrices for tissue engineering. Tissue Eng. 7 (2): 203–210.

    Article  CAS  Google Scholar 

  102. Iwata, H.; Amemiya, H.; Matsuda, T.; Takano, H.; Hayashi, R. and Akutsu, T. (1989) Evaluation of microencapsulated islets in agarose gel as bioartificial pancreas by studies of hormone secretion in culture and by xenotransplantation. Diabetes. 38 (Suppl. 1): 224–225.

    Google Scholar 

  103. Rahfoth, B.; Weisser, J.; Stemkopf, F.; Aigner, T.; von der Mark, K. and Brauer, R. (1998) Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage 6 (1): 50–65.

    Article  CAS  Google Scholar 

  104. Seppala, J.V.; Korhonen, H.; Kylma, J. and Tuominen, J. (2002) General Methodology for Chemical Synthesis of Polyesters. In: Yoshiharu, D. and Steinbüchel, A. (Eds.) Biopolymers, Vol. 3b: Polyesters II - Properties and Chemical Synthesis. Wiley-VCH, Weinheim; pp. 327–370.

    Google Scholar 

  105. Hollinger, J.O. and Schmitz, J.P. (1987) Restoration of bone discontinuities in dogs using a biodegradable implant. J. Oral Maxillofac. Surg. 45 (7): 594–600.

    Article  CAS  Google Scholar 

  106. Mayer, J.; Karamuk, E.; Akaike, T. and Wintermantel, E. (2000) Matrices for tissue engineering-scaffold structure for a bioartificial liver support system. J. Control. Release 64 (1–3): 81–90.

    Article  CAS  Google Scholar 

  107. Widmer, M.S.; Gupta, P.K.; Lu, L.; Meszlenyi, R.K.; Evans, G.R.; Brandt, K.; Savel, T.; Gurlek, A.; Patrick, C.W., Jr. and Mikos, A.G. (1998) Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials 19 (21): 1945–1955.

    Article  CAS  Google Scholar 

  108. Domb, A.J.; Amselem, S.; Langer, R. and Maniar, M. (1994) Polyanhydrides as carriers of drugs. In: Shalaby, W.S. (Ed.) Biomedical Polymers. Hanser Publishers, Munich (Germany); pp. 69–96.

    Google Scholar 

  109. Ibim, S.E.; Uhrich, K.E.; Attawia, M.; Shastri, V.R.; El-Amin, S.F.; Bronson, R.; Langer, R. and Laurencin, C.T. (1998) Preliminary in vivo report on the osteocompatibility of poly(anhydride-co-imides) evaluated in a tibial model. J. Biomed. Mater. Res. 43 (4): 374–379.

    Article  CAS  Google Scholar 

  110. Ibim, S.M.; Uhrich, K.E.; Bronson, R.; El-Amin, S.F.; Langer, R.S. and Laurencin, C.T. (1998) Poly(anhydride-co-imides): in vivo biocompatibility in a rat model. Biomaterials 19 (10): 941–951.

    Article  CAS  Google Scholar 

  111. Anseth, K.S.; Svaldi, D.C.; Laurencin, C.T. and Langer, R. (1997) Potopolymerization of novel degradable networks for orthopaedic applications. In: Scranton, A.B.; Christopher, N.B. and Peiffer, R.W. (Eds.) Photopolymerizaion: fundamentals and applications. American Chemical Society, Washington D.C.; pp. 189–202.

    Chapter  Google Scholar 

  112. Burkoth, A.K. and Anseth, K.S. (2000) A review of photocrosslinked polyanhydrides: in situ forming degradable networks. Biomaterials 21 (23): 2395–2404.

    Article  CAS  Google Scholar 

  113. Fu, K.; Pack, D.W.; Klibanov, A.M. and Langer, R. (2000) Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res. 17 (1): 100–106.

    Article  CAS  Google Scholar 

  114. Sawhney, A.S. (1999) Poly(ethylene glycol). In: Kuhtreiber, W.M.; Lanza, R.P. and Chick, W.L. (Eds.) Cell encapsulation technology and therapeutics. Birkhauser, Boston; pp. 108–116.

    Chapter  Google Scholar 

  115. Sawhney, A.S. and Hubbell, J.A. (1992) Poly(ethylene oxide)-graft-poly(L-lysine) copolymers to enhance the biocompatibility of poly(L-lysine)-alginate microcapsule membranes. Biomaterials 13(12) 863870.

    Google Scholar 

  116. Metters, A.T.; Bowman, C.N. and Anseth, K.S. (2000) A statistical kinetic model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks. Journal of Physical Chemistry 104: 7043–7049.

    CAS  Google Scholar 

  117. Bryant, S.J. and Anseth, K.S. (2002) Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59 (1) 63–72.

    Article  CAS  Google Scholar 

  118. Dupuy, B.; Gin, H.; Baquey, C. and Ducassou, D. (1988) In situ polymerization of a microencapsulating medium round living cells. J. Biomed. Mater. Res. 22(11) 1061–1070.

    Google Scholar 

  119. Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P. and Hedrick, M.H. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7 (2): 211–228.

    Article  CAS  Google Scholar 

  120. Heath, C.A. (2000) Cells for tissue engineering. Trends Biotechnol. 18 (1): 17–19.

    Article  CAS  Google Scholar 

  121. Oreffo, R.O. and Triffitt, J.T. (1999) Future potentials for using osteogenic stem cells and biomaterials in orthopedics. Bone 25 (2 Suppl): 5S - 9S.

    Article  CAS  Google Scholar 

  122. Fontaine, M.; Hansen, L.K.; Thompson, S.; Uyama, S.; Ingber, D.E.; Langer, R. and Vacanti, J.P. (1993) Transplantation of genetically altered hepatocytes using cell-polymer constructs. Transplant. Proc. 25 (1 Pt 2): 1002–1004.

    CAS  Google Scholar 

  123. Giordano, R.A.; Wu, B.M.; Borland, S.W.; Cima, L.G.; Sachs, E.M. and Cima, M.J. (1996) Mechanical properties of dense polylactic acid structures fabridated by three dimensional printing. J. Biomater. Sci. Polym. Ed. 8(1): 63–75.

    Google Scholar 

  124. Griffith, L.G.; Wu, B.; Cima, M.J.; Powers, M.J.; Chaignaud, B. and Vacanti, J.P. (1997) In vitro organogenesis of liver tissue. Ann. N.Y. Acad. Sci. 831: 382–397.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Riddle, K.W., Mooney, D.J. (2004). Biomaterials for Cell Immobilization. In: Nedović, V., Willaert, R. (eds) Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1638-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6534-6

  • Online ISBN: 978-94-017-1638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics