Skip to main content

Remote Sensing of Solar-Induced Chlorophyll Fluorescence from Vegetation Hyperspectral Reflectance and Radiative Transfer Simulation

  • Chapter
From Laboratory Spectroscopy to Remotely Sensed Spectra of Terrestrial Ecosystems

Abstract

This chapter describes a series of laboratory and field measurements of spectral reflectance under artificial and natural light conditions which demonstrate that effects of natural chlorophyll fluorescence are observable in the reflectance red edge spectral region. Leaf samples were used for reflectance and transmittance measurements with integrating sphere apparatus coupled to a fibre spectrometer in which the same leaves were illuminated alternatively with and without fluorescence-exciting radiation. A study of the diurnal change in leaf reflectance spectra, combined with fluorescence measurements with the PAM-2000 Fluorometer showed that the difference spectra are consistent with observed diurnal changes in steady-state fluorescence. Small canopies were used for laboratory measurements with the airborne CASI hyperspectral sensor, and under natural light conditions with a fibre spectrometer in diurnal trials, in which the variation of measured reflectance was shown to be consistent with a fluorescence signature imposed on the leaf reflectance signature. The FRT model is presented which simulates the effects of fluorescence on leaf reflectance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, W. A. and Richardson, A. J. (1968), Interaction of light with a plant canopy, Journal of the Optical Society ofAmerica. 58: 1023–1028.

    Article  Google Scholar 

  • Allen, W.A., Gausman, H.W., Richarson, A.J., and Thomas, J.R. (1969), Interaction of isotropic light with compact plan leaf, J. Optic. Soc. Amer. 59 (10): 1376–1379.

    Article  CAS  Google Scholar 

  • Allen, W.A., Gayle and Richarson A.J. (1970), Plant canopy irradiance specified by the Duntley equations, J. Opt. Soc. Am. 60 (3): 372–376.

    Article  Google Scholar 

  • Breece, H.T., Holmes, R.A., (1971), Bidirectional Scattering Characteristics of Healthy Green Soybean and Corn Leaves Vivo, Appl. Opt. 10: 119–127.

    Article  Google Scholar 

  • Buschmann, C. and Lichtenthaler, H. K. (1988), Reflectance and chlorophyll fluorescence signatures in leaves, In Applications of Chlorophyll Fluorescence, ( Lichetnthaler, H. K., Ed.), Kluwer Academic Publications, Dordrecht, pp. 325–332.

    Google Scholar 

  • Carter, G. A. (1994), Ratios of leaf reflectances in narrow wavebands as indicators of plant stress, International Journal of Remote Sensing. 15: 697–704.

    Article  Google Scholar 

  • Dawson, T. P., Curran, P. J. and Plummer, S. E. (1998), LIBERTY-Modeling the effects of leaf biochemical concentration on reflectance spectra, Remote Sensing of Environment. 65: 50–60.

    Article  Google Scholar 

  • Fukshansky, L. and Kararinova, N. (1980), Extension of the Kubelka-Munk theory of light propogation in the intensely scattering materials to fluorescent materials, Journal of the Optical Society ofAmerica. 70: 1101–1111.

    Article  CAS  Google Scholar 

  • Gamon, J. A., Serrano, L. and Surfus, J. S. (1997), The photochemical reflectance index: An optical indicator of photosynthetic radiation-use efficiency across species, functional types, and nutrient levels, Oecologia. 112: 492–501.

    Article  Google Scholar 

  • Gamon, J. A. and Surfus, J. S. (1999), Assessing leaf pigment content and activity with a reflectometer, New. Phytol. 143: 105–117.

    Article  CAS  Google Scholar 

  • Ganapol, B.D., Johnson, L.F., Hammer, P.D., Hlavka, C.A. and Peterson, D.L. (1998), LEAFMOD: a new within-leaf radiative transfer model, Remote Sens. Environ. 63: 182–193.

    Article  Google Scholar 

  • Ganapol, B.D., Johnson, L.F., Hlavka, C.A., Peterson, D.L., and Bond, B. (1999), LCM2: A coupled Leaf/Canopy radiative transfer model, Remote Sens. Environ. 70: 153–166.

    Article  Google Scholar 

  • Gausman, H.W., Allen, W.A., Cardenas, R. and Richarson, A.J. (1970), Relation of light reflectance to histological and physical evaluations of cotton leaf maturity, Appl. Optic. 9: 545–552.

    Article  CAS  Google Scholar 

  • Gitelson, A. A. and Merzlyak, M. N. (1996), Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll, Journal of Plant Physiology. 148: 494–500.

    Article  CAS  Google Scholar 

  • Gitelson, A. A., Buschman, C., and Lichtenthaler, H. K., (1999), The chlorophyll fluorescence ratio F735/F700 as an accurate measure of chlorophyll content in plants, Remote Sensing of Environment. 69: 296–302.

    Article  Google Scholar 

  • Govindjee (1995), Sixty-three years since Kautsky: Chlorophyll a fluorescence, Aust. J. Plant Physiol. 22: 131–160.

    Article  CAS  Google Scholar 

  • Jacquemoud, S. and Baret, F. (1990), Prospect: A model of leaf optical properties spectra, Remote Sensing of Environment. 34: 75–91.

    Article  Google Scholar 

  • Krause, G. H. and Weis, E. (1984), Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals, Photosynthesis Res. 5: 139–157.

    Article  CAS  Google Scholar 

  • Kubelka, P. and Munk, F., (1931), Ein Beitrag zur Optik der Farbanstriche, Ann. Techn. Phys. 11: 593–610.

    Google Scholar 

  • Larcher, W. (1994), Photosynthesis as a tool for indicating temperature stress events, In Ecophysiology of photosynthesis, ( Schulze, E. D. and Caldwell, M. M., Ed.), Springer, Berlin, pp. 261–277.

    Google Scholar 

  • Lichtenthaler, H. K. and Rinderle, U. (1988), The role of chlorophyll fluorescence in the detection of stress conditions in plants, CRC Crit. Rev. Anal. Chem. 19 (Suppl. 1): 529–585.

    Google Scholar 

  • Lichtenthaler, H. K. (1992), The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics, Photosynthetica. 27: 45–55.

    CAS  Google Scholar 

  • Miller, J. R., E. W. Hare, and J. Wu, Quantitative characterization of the vegetation red edge reflectance I. An inverted-Gaussian reflectance model, Int. J. Remote Sens., 11, 121–127, 1990.

    Article  Google Scholar 

  • Mohammed, G. H., Binder, W. D., and Gillies, S. L., (1995), Chlorophyll fluorescence: A review of its practical forestry applications and instrumentation, Scand. J. For. Res. 10: 383–410.

    Article  Google Scholar 

  • Mohammed, G.H. (1997), The status and future of stock quality testing, New For. 13: 491–514.

    Article  Google Scholar 

  • Papageorgiou, G. (1975), Chlorophyll fluorescence: An intrinsic probe of photosynthesis, In Bioenergetics of Photosynthesis, Govindjee, ed., Academic Press, New York, pp. 319–371.

    Google Scholar 

  • Penuelas, J., Filella, I., Lloret, P., Munoz, F., and Vilajeliu, M., (1995), Reflectance assessment of mite effects on apple trees, Int. J Remote Sensing. Vol. 16–14: 2727–2733.

    Article  Google Scholar 

  • Penuelas, J., Liusia, J., Pinol, J. and Filella, I. (1997), Photochemical reflectance index and leaf photosynthetic radiation-use-efficiency assessment in Mediterranean trees, International Journal of Remote Sensing. 18: 2863–2868.

    Article  Google Scholar 

  • Penuelas, J., Filella, I., Liusia, J., Siscart, D. and Pinol, J. (1998), Comparative field study of spring and summer leaf gas exchange and photobiology of the mediterranean trees Quercus ilex and Phillyrea latifolia, J. Exp. Bot. 49: 229–238.

    CAS  Google Scholar 

  • Rock, B. N., Hoshizaki, T., and Miller, J. R. (1988), Comparison of In Situ and airborne spectral measurements of the blue shift associated with forest decline, Remote Sens. of Environment. 24: 109–127.

    Article  Google Scholar 

  • Rosema, A., Verhoef, W., Schroote, J. and Snel, J. F. H. (1991), Simulating fluorescence light-canopy interaction in support of laser-induced fluorescence measurements, Remote Sensing of Environment. 37: 117–130.

    Article  Google Scholar 

  • Sampson, P. H., Mohammed, G. H., Colombo, S. J., Noland, T. L., Miller, J. R., Zarco-Tejada, P. J. (1998), Bioindicators of forest sustainability progress report, Report 142, Ontario Forest Research Institute, Sault Ste. Marie, ON.

    Google Scholar 

  • Schreiber, U. and Bilger, W. (1987), Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements, In Plant response to stress, ( Tenhunen, J. D. and Catarino, E. M., Ed.), Springer-Verlag, Berlin, Germany, pp. 27–53.

    Chapter  Google Scholar 

  • Schreiber, U. and Bilger, W. (1993), Progress in chlorophyll fluorescence research: Major development during the past years in retrospect, Progress in Botany. 54: 151–173.

    CAS  Google Scholar 

  • Schreiber, U., Bilger, W. and Neubauer, C. (1994), Chlorophyll fluorescence as a non-destructive indicator for rapid assessment of in vivo photosynthesis, Ecol. Stud. 100: 49–70.

    CAS  Google Scholar 

  • Soffer, R. (1996), Bidirectional reflectance factors of an open tree canopy by laboratory simulation. M.Sc. Thesis, Graduate Program in Earth and Space Science, York University, Toronto, 204 pp.

    Google Scholar 

  • Subhash, N. and Mohanan, C. N. (1997), Curve-fit analysis of chlorophyll fluorescence spectra: Application to nutrient stress detection in sunflower, Remote Sens. Environ. 60: 347–356.

    Article  Google Scholar 

  • Taiz, L. and Zeiger, E. (1998), Plant Physiology, 2“ d Edition, Sinauer Associates Ltd., Sunderland, Massachusetts.

    Google Scholar 

  • Willstatter, R., and Stoll, A., (1913), Untershuchunger uber die Assimilation der Kolhensaure ( Springer, Berlin).

    Google Scholar 

  • Woolley, J.T., (1971), Reflectance and transmittance of light leaves, Plant Physiol. 47: 656–662.

    Article  CAS  Google Scholar 

  • Vogelmann, J. E., Rock, B. N. and Moss, D. M. (1993), Red edge spectral measurements from sugar maple leaves, International Journal of Remote Sensing. 14: 1563–1575.

    Article  Google Scholar 

  • Yamada, N. and Fujimura, S. (1988), A mathematical model of reflectance and transmittance of plant leaves as a function of chlorophyll pigment content, in Proceedings of the International Geoscience and Remote Sensign Symposium, T.D. Guyenne and J.J. Hunt eds. (European Space Agency, Noodwijk, The Netherlads, 1988 ), pp. 833–8334.

    Google Scholar 

  • Yamada, N. and Fujimura, S. (1991), Nondestructive measurement of chlorophyll pigment content in plant leaves from three-color reflectance and transmittance, Applied Optics. 30: 3964–3973.

    Article  CAS  Google Scholar 

  • Zarco-Tejada, P. J., (2000), Hyperspectral Remote Sensing of Closed Forest Canopies: Estimation of Chlorophyll Fluorescence and Pigment Content. September 2000. Ph.D. Thesis, Graduate Program in Earth and Space Science, York University, Toronto.

    Google Scholar 

  • Zarco-Tejada, P. J., Miller, J. R., Mohammed, G. H., Noland, T. L., (2000a), Chlorophyll Fluorescence Effects on Vegetation Apparent Reflectance: I. Leaf-Level Measurements and Model Simulation, Remote Sensing of Environment, 74 (3): 582–595.

    Article  Google Scholar 

  • Zarco-Tejada, P. J., Miller, J. R., Mohammed, G. H., Noland, T. L and Sampson, P.H., (2000b), Chlorophyll Fluorescence Effects on Vegetation Apparent Reflectance: II. Laboratory and Airborne Canopy-Level Measurements with Hyperspectral data, Remote Sensing of Environment, 74 (3): 596–608.

    Article  Google Scholar 

  • Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H., Noland, T.L., and Sampson, P.H. (2000c), Estimation of Chlorophyll Fluorescence under Natural Illumination from Hyperspectral Data. In Proceedings of the Second EARSeL Workshop on Imaging Spectroscopy, Enschede (Holland), 1 lth-13th July, 2000.

    Google Scholar 

  • Zarco-Tejada, P. J., Miller, J. R., Noland, T. L., Mohammed, G. H., and Sampson, P. H. (2001), Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data, IEEE Transactions on Geosciences and Remote Sensing, 39 (7), 1491–1507.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H. (2002). Remote Sensing of Solar-Induced Chlorophyll Fluorescence from Vegetation Hyperspectral Reflectance and Radiative Transfer Simulation. In: Muttiah, R.S. (eds) From Laboratory Spectroscopy to Remotely Sensed Spectra of Terrestrial Ecosystems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1620-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1620-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6076-1

  • Online ISBN: 978-94-017-1620-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics