Skip to main content

Abstract

Modeling of solar-stimulated chlorophyll fluorescence as it would be measured with an orbital instrument using the Fraunhofer line depth method has produced data sets that correlate well with induced stress in vegetation. The models include simulations of data for 24 single solar Fraunhofer lines that span the visible spectrum in the region where chlorophyll fluorescence occurs, and 155 combinations of Fraunhofer lines for red/far-red (R/FR) ratios. Source data for this modeling effort had been obtained from summer and fall bean crops (Phaseolus vulgaris L.) subjected to various levels of nitrogen fertilization. Corrections applied to the derived intensities account for Fraunhofer line depth and atmospheric transmittance. The R/FR ratios and the single Fraunhofer lines were evaluated for correlation with measured leaf chlorophyll and applied nitrogen. Selection criteria were established that yielded 7 ratios determined to be best suited for separating vegetation by levels of stress. Those ratios are: 714.28 / 739.94 nm; 713.09 / 716.44 nm; 713.09 / 744.58 nm; 714.28 / 742.23 nm; 714.28 / 716.44 nm; 703.82 / 716.44 nm; and 656.28 / 738.94 nm Simulated images demonstrate that the statistical differences would be visually recognizable. Based on the findings of this study, it is concluded that a passive fluorescence instrument designed to monitor R/FR chlorophyll fluorescence using the Fraunhofer line depth method from orbit would produce valuable information about the physiological condition of terrestrial vegetation on a global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blaich R. 1988. Early Detection of damage conditions in plants by delayed chlorophyll fluorescence. In Applications of Chlorophyll Fluorescence in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing. H. K. Lichtenthaler (Ed.) Kluwer Academic Publishers. Pp. 223 – 228

    Google Scholar 

  • Bradbury M. and N. R. Baker. 1981. Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve/Changes in the redox state of photosystem II electron acceptors and fluorescence emission from photosystems I and II. Biochim. Biophys. Acta 635: 542–551.

    Article  CAS  Google Scholar 

  • Bucholtz A., W. R. Skinner, V. J. Abreu, and P. B. Hays. 1986. The dayglow of the 02 atmospheric band system. Plant. Space Sci. 34: 1031–1035.

    Article  CAS  Google Scholar 

  • Carter G. A., J. H. Jones, R. J. Mitchell, and C. H. Brewer. 1996. Detection of solar-excited Chlorophyll a fluorescence and leaf photosynthetic capacity using a Fraunhofer Line Radiometer. Remote Sens. Environ. 55: 89–92.

    Article  Google Scholar 

  • Carter G.A., A. F. Theisen, and R. J. Mitchell. 1990. Chlorophyll fluorescence measured using the Fraunhofer line-depth principle and relationship to photosynthetic rate in the field. Plant, Cell and Environment. 13: 79–83.

    Article  CAS  Google Scholar 

  • Chance K. V. and R. J. D. Spurr. 1997. Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. Applied Optics 36: 5224–5230.

    Google Scholar 

  • Chanin M. L., 1975. Filling in of the Fraunhofer lines by scattering on the ground, J. Geophys. Res. 80: 2859–2862.

    Article  Google Scholar 

  • Cook W. 1999. personal communication.

    Google Scholar 

  • Eckert R., T. Lee, K. Stapelfeldt, A. Theisen, R. Kohut, J. Laurence, and P. King. 1992. Studies to assess the effects of ozone on native vegetation of Acadia National Park. 1992. Annual Report to the Natl. Park Serv. 144 pp.

    Google Scholar 

  • Farber E. (Ed.). 1966. Bunsen’s Methodological Legacy. Milestones of Modern Chemistry. Basic Books, Inc., New York. Pp. 19.

    Google Scholar 

  • Fraunhofer J. 1817. Denkschriften der Much. Akademie der Wissenchaften 5: 193.

    Google Scholar 

  • Gitelson A. A., C. Buschmann, and H. K. Lichtenthaler. 1998. Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. J. Plant Physiol. 152: 283 – 296.

    Article  CAS  Google Scholar 

  • Govindjee. 1995. Sixty-three years since Kautsky: Chlorophyll a Fluorescence. Aust. J. Plant Physiol. 22: 131 – 160.

    Article  CAS  Google Scholar 

  • Grainger J. F. and J. Ring. 1962. Chapter 10. The luminescence of the lunar surface. Physics and Astronomy of the Moon. Academic Press, New York and London. Pp. 385 – 405.

    Google Scholar 

  • Gruszecki W. I., K. Veeranjaneyulu, B. Zelent, and R. M. Leblanc. 1991. Energy transfer process during senescence: fluorescence and photoacoustic studies of intact pea leaves. Biochim. Biophys. Acta 1056: 173 – 180.

    Google Scholar 

  • Hak R., H. K. Lichtenthaler, and U. Rinderle. 1990. Decrease of the fluorescence ratio F685/F730 during greening and development of leaves. Rad. Environ. Biophysics 29: 329–336.

    Google Scholar 

  • Hemphill W. R. and M. Settle. (Eds.) 1981. Workshop on applications of luminescence techniques to Earth resource studies. LPI tech. Report 81–03, Lunar and Planetary Institute, Houston.

    Google Scholar 

  • Hercules D. M. 1966. Fluorescence and Phosphorescence Analysis Principles and Applications, Interscience Publishers. 258 pp.

    Google Scholar 

  • Hershel J. F. W. 1833. A Treatise in Astronomy. London. Pp. 212.

    Google Scholar 

  • Hiscox J. D. and G. F. Israelstam. 1979. A method for the extraction of chlorophyll from leaf tissue without masceration. Can. J. Bot. 57: 1332–1334.

    Article  CAS  Google Scholar 

  • Jastrow J. D. and D. E. Koeppe. 1980. Uptake and effects of cadmium in higher plants, in Cadmium in the Environment Part I: Ecological Cycling. J. O. Nriagu (Ed.). Pp. 607 – 638.

    Google Scholar 

  • Joiner J., P. K. Bhartia, R. P. Cebula, E. Hilsenrath, R. D. McPeters, and H. Park. 1995. Rotational Raman scattering ( Ring effect) in satellite backscatter ultraviolet measurements. Applied Optics 34: 4513–4525.

    Article  CAS  Google Scholar 

  • Junge W. 1977. Physical aspects of light harvesting, electron transport, and electrochemical potential generation in photosynthesis of green plants. Encyclopedia of Plant Physiology. vol. 5. Photosynthesis I Pp. 179 – 186.

    Google Scholar 

  • Kebabian P. L., A. F. Theisen, S. Kallelis, and A. Freedman. 1999. A passive two-band sensor of sunlight-excited plant fluorescence Rev. Sci. Instrum. 70 (11): 4386 – 4393.

    Article  CAS  Google Scholar 

  • Kirchhoff Gustay. 1861. Untersuchungen Ober das Sonnespectrum “Researches on the solar spectrum”. Translated with the author’s sanction from the Transactions of the Berlin Academy 1861 by Henry Enfield Roscoe. Macmillan and Co. 1862. Cambridge, London. Pp. 36.

    Google Scholar 

  • Kirchhoff Gustav and Robert Bunsen. 1860. Chemical analysis by observation of spectra. Annalen der Physik und der Chemie (Poggendorff)110: 161 – 189.

    Google Scholar 

  • Krause G. H. and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 313–349.

    Article  CAS  Google Scholar 

  • Krupa Z., G. Oquist, and N. P. A. Huner. 1992. The influence of cadmium on primary photosystem II photochemistry in bean as revealed by chlorophyll a fluorescence - a preliminary study. Acta Physiol. Plant. 14: 71–76.

    Google Scholar 

  • Lichtenthaler H. K. 1996. Vegetation Stress: an Introduction to the Stress Concept in Plants. J. Plant Physiol. 148: 4 – 14.

    Article  CAS  Google Scholar 

  • Lichtenthaler H. K. and U. Rinderle. 1988. The role of chlorophyll fluorescence in the detection of stress conditions in plants. Critical Reviews in Analytical Chemistry. Vol. 19. Supplement 1. CRC Press, Inc. Pp. S29 – S85.

    Google Scholar 

  • Lichtenthaler H. K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology 148: 349–382.

    Article  Google Scholar 

  • Lichtenthaler H. K., C. Buschmann, U. Rinderle, and G. Schmuck. 1986. Application of chlorophyll fluorescence in ecophysiology. Radiat. Environ. Biophys. 25: 297–308.

    Article  CAS  Google Scholar 

  • Link F. 1951. Variations lumineuses de la Lune. Bull. Centr. Astr. Inst. Czech 2: 131 – 133.

    Google Scholar 

  • Lumb M. D. 1978. Luminescence Spectroscopy. Academic Press. 375 pp.

    Google Scholar 

  • Marsh D. R., W. R. Skinner, and V. A. Yudin. 1999. Tidal influences on 02 atmospheric band dayglow: HRDI observations vs. model simulations. Geophysical Research Letters 26: 1369–1372.

    Article  CAS  Google Scholar 

  • McFarlane J. C, R. D. Watson, A. F. Theisen, R. Jackson, W. L. Ehrler, P. J. Pinter, S. B. Idso, and R. J. Reginato. 1980. Plant stress detection by remote measurements of fluorescence. Applied Optics 19: 3287 – 3289.

    Article  CAS  Google Scholar 

  • Mlynczak M. G. and D. S. Olander. 1995. On the utility of the oxygen dayglow emissions as proxies for middle atmospheric ozone. Geophysical Research Letters 22: 1377 – 1380.

    Article  CAS  Google Scholar 

  • Mullet J. E., J. J. Burke, and C. J. Arntzen. 1980. Chlorophyll proteins of photosystem I. Plant Physiol. 65: 814 – 822.

    Article  CAS  Google Scholar 

  • Murata N., H. Tashiro, and A. Takamiya. 1970. Effects of divalent metal ions on chlorophyll a fluorescence in isolated spinach chloroplasts, Biochim. Biophys. Acta 197: 250–256.

    Google Scholar 

  • Narwal R. P., M. Singh, and D. J. Dahiya. 1990. Effects of cadmium on plant growth and heavy metals content of corn ( Zea mays L. ). Crop Research. 3: 13–20.

    Google Scholar 

  • Padmaja K., D. D. K. Prasad, and A. R. K. Prasad. 1990. Inhibition of chlorophyll Synthesis in Phaseolus vulgaris L. seedling by cadmium acetate. Photosynthetica 24: 399 – 405.

    CAS  Google Scholar 

  • Plascyk J. A. 1975. The MKII Fraunhofer line discriminator ( FLD-II) for airborne and orbital remote sensing of solar-stimulated luminescence. Optical Engineering 14: 339–346.

    Google Scholar 

  • Reader J. and C. H. Corliss. 1981. Astronomical Data Center (ADC) Catalog A6016. ‘Line Spectra of the Elements’. CRC Handbook of Chemistry and Physics. NSRDS-NBS 68 and at http://home. achilles. nethj talbot/data/elements/index. html.

    Google Scholar 

  • Reber H. H. 1989. Threshold levels of cadmium for soil respiration and growth of spring wheat ( Triticum aestivum L.), difficulties with their determination. Biology and Fertility of Soils 7: 152–157.

    Google Scholar 

  • Rock B. N. 1999. unpublished data.

    Google Scholar 

  • Rock B. N., T. Hoshizaki, and J. R. Miller. 1988. Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline. Remote Sensing of Environment 24: 109 – 127.

    Article  Google Scholar 

  • Schreiber U., W. Vidaver, V. C. Runeckles, and P. Rosen. 1978. Chlorophyll assay for ozone injury in intact plants. Plant Physiol. 61: 80 – 84.

    Article  CAS  Google Scholar 

  • Sokal R. R. and F. J. Rohlf. 1981. Biometry. W. H. Freeman and Company, San Francisco. 859 Pp.

    Google Scholar 

  • Stahl U., V. B. Tusov, V. Z. Paschenko, and J. Voigt. 1988. Spectroscopic investigations of fluorescence behaviour, role and function of the long-wavelength pigments of photosystem I. Biochim. Biophys. Acta 973: 198–204.

    Google Scholar 

  • Strasser R. J. and W. L. Butler. 1977. Fluorescence emission of photosystem I, photosystem II, and the light-harvesting a/b complex of higher plants. Biochim. Biophys. Acta 462: 307–318.

    Google Scholar 

  • Theisen A. F., B. N. Rock, R. T. Eckert. 1994. Detection of changes in steady-state chlorophyll fluorescence in Pinus strobus following short-term ozone exposure. J. Plant Physiol. 144: 410 – 419.

    Article  CAS  Google Scholar 

  • Turner M. A. 1973. Effect of cadmium treatment on cadmium and zinc uptake by selected vegetable species. J. Environ. Quality 2: 118–119.

    Google Scholar 

  • Van Duijvendijk-Matteoli M. A. and G. M. Desmet. 1975. On the inhibitory action of cadmium on the donod side of photosystem II in isolated chloroplasts. Biochim. Biophys. Acta 408: 164–169.

    Google Scholar 

  • Vogelmann J. E., B. N. Rock, and D. M. Moss. 1993. Red edge spectral measurements from sugar maple leaves. Internat. J. Remote Sensing 14: 1563–1575.

    Google Scholar 

  • Vountas Marco 1998. Modeling and Parameterization of the Ring Effect: Impact on the Determination of Stratospheric Trace Gases. Doctoral Dissertation. Physics. Universität Bremen. Fachbereich I

    Google Scholar 

  • Walker D. 1992. Tansley Review No. 36, Excited leaves. New Phytol. 121: 325 – 345.

    Article  CAS  Google Scholar 

  • Wang J., G. P. Anderson, H. E. Revercomb, and R. O. Knuteson. 1996. Validation of FASCOD3 and MODTRAN3: comparison of model calculations with ground-based and airborne interferometer observations under clear-sky conditions. Applied Optics 35: 6028 – 6040.

    Article  CAS  Google Scholar 

  • Witasse O., J. Lilensten, and C. Lathuillère. 1999. Modeling the OI 630.0 and 557.7 nm thermospheric dayglow during EISCAT-WINDII coordinated measurements. J. Geophys. Res. 104: 24639–24655.

    Google Scholar 

  • Wollaston W. H. 1802. Phil. Trans. R. Soc. 92: 365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Theisen, A.F. (2002). Detecting Chlorophyll Fluorescence from Orbit: The Fraunhofer Line Depth Model . In: Muttiah, R.S. (eds) From Laboratory Spectroscopy to Remotely Sensed Spectra of Terrestrial Ecosystems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1620-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1620-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6076-1

  • Online ISBN: 978-94-017-1620-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics