Skip to main content

EPR Studies of Fenton-Type Reactions in Copper- Peroxide Systems

  • Chapter
Free Radicals in Biology and Environment

Part of the book series: NATO ASI Series ((ASHT,volume 27))

Abstract

Considerable controversy surrounds the nature of the mechanisms involved in the copper-catalysed decomposition of hydrogen peroxide, and it seems likely that a very wide range of mechanistic types is implicated — including non-radical mechanisms, those which involve oxygen-centred radicals (possibly in Fenton-type chemistry), and the reactions of high-valent copper (CuIII) and copper-peroxo species [1]. Thus it has been suggested that CuII-H2O2 reactions involve the hydroxyl radical (formed via CuI and H2O2 [2]); other workers have claimed that copper complexes [3] or [4] CuIIIare involved and, at least for certain ligands and substrates, it is proposed that copper-catalysed decomposition of hydrogen peroxide does not involve free radicals [5]. The precise mechanism followed is likely to be critically dependent on the reaction conditions (e.g. solvent, ligand and substrate) and on the nature of any added potential one-electron reductants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weser,U., Steinkuhler, C. and Rotilio, G. (1996) Copper complexes and free radicals, in G. Berthon (ed.), Handbook of Metal-Ligand Interactions in Biological Fluids, Marcel Dekker, Part 4, Chapter 3, pp. 867–875.

    Google Scholar 

  2. Goldstein, S. and Czapski, G. (1983) Mechanisms of the dismutation of superoxide catalysed by the copper(II) phenanthroline complex by oxygen in aqueous solution, J. Am. Chem. Soc., 105, 7276–7280.

    Article  CAS  Google Scholar 

  3. Masarwa, M., Cohen, H., Meyerstein, D., Hickman, D. L., Bakac A. and Espenson, J. H. (1988) Reactions of low-valent transition-metal complexes with hydrogen peroxide. Are they “Fenton-like” or not? 1. The case of Cu*(aq) and Cr2+(aq), J. Am. Chem. Soc., 110, 4293–4297.

    Article  CAS  Google Scholar 

  4. Johnson, G. R. A., Nazhat, N. B. and Saadalla-Nazhat, N. A. (1988) Reaction of the aquacopper(I) ion with hydrogen peroxide–evidence for a Cu(III) (cupryl) intermediate, J. Chem. Soc. Faraday Trans. 1, 84, 501–510; Johnson, G. R. A. and Nazhat, N. B. (1987) Kinetics and mechanism of the reaction of the bis(1,10-phenanthroline) copper(I) ion with hydrogen peroxide in aqueous solution, J. Am. Chem. Soc, 109, 1990–1994.

    Article  Google Scholar 

  5. See e.g. Sigel, H., Flierl, C. and Griesser, R. (1969) On the kinetics and mechanism of the decomposition of hydrogen peroxide, catalysed by the Cue2+-2, 2′-bipyridyl complex, J. Am. Chem. Soc., 91, 1061–1064.

    Google Scholar 

  6. Yamamoto, K. and Kawanishi, S. (1989) Hydroxyl free radical is not the main active species in site-specific DNA damage induced by copper(II) ion and hydrogen peroxide, J. Biol. Chem., 264, 1543515440.

    Google Scholar 

  7. Stoewe, R. and Prütz, W. A. (1987) Copper-catalysed DNA damage by ascorbate and hydrogen peroxide: kinetics and yield, Free Rad. Biol. Med., 3, 97–105.

    Article  PubMed  CAS  Google Scholar 

  8. Mukherjee, U. and Chatterjee, S. N. (1995) Oxidative damage of DNA and benzoate by chelated and non-chelated copper in the presence of hydrogen peroxide, Indian J. Biochem. Biophys., 32, 32–36.

    PubMed  CAS  Google Scholar 

  9. Ozawa, T., Hanaki, A., Onodera, K. and Kasai, M. (1992) Reactions of copper(II)-N-polycarboxylate complexes with hydrogen peroxide in the presence of biological reductants: ESR evidence for the formation of hydroxyl radical, Biochem. International, 26, 477–483; see also Ozawa, T., Ueda, J. and Hanaki, A. (1993) Copper(II)-albumin complex can activate hydrogen peroxide in the presence of biological reductants: first ESR evidence for the formation of hydroxyl radical, Biochem. Mol. Biol. Int., 29, 247–253.

    Google Scholar 

  10. Reed, C. J. and Douglas, K. T. (1989) Single-strand cleavage of DNA by Cu(II) and thiols: a powerful chemical DNA-cleaving system, Biochem. Biophys. Res. Comm., 162, 1111–1117; Reed, C. J. and Douglas, K. T. (1991) Chemical cleavage of plasmid DNA by glutathione in the presence of Cu(II) ions, Biochem. J., 275, 601–608.

    Google Scholar 

  11. Hanna, P. M. and Mason, R. P. (1992) Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping approach, Arch. Biochem. Biophys., 295, 205.

    Article  PubMed  CAS  Google Scholar 

  12. Milne, L., Nicotera, P., Orrenius, S. and Burkitt, M. (1993) Effects of glutathione and chelating agents on copper-mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione, Arch. Biochem. Biophys.,304, 102–109..

    Google Scholar 

  13. Ferreira, A. M. C. and Toma, H. E. (1988) Further studies on the kinetics and mechanism of the copper imidazole catalysed decomposition of hydrogen peroxide, J. Coord. Chem., 18, 351–359.

    Article  CAS  Google Scholar 

  14. Byrnes, R. W., Mohan, M., Antholine, W. E., Xu, R. X. and Petering, D. H. (1990) Oxidative systems induced by a copper-thiosemicarbazide complex, Biochem., 29, 7046–7053.

    Article  CAS  Google Scholar 

  15. Saryan, L. A., Mailer, K., Krishnamurti, C., Antholine, W. and Petering, D. H. (1981) Interaction of 2formylpyridine thiosemicarbazonato copper(II) with Ehrlich ascites tumour cells, Biochem. Pharm., 30, 1595–1604.

    Article  PubMed  CAS  Google Scholar 

  16. Steinkühler, C., Mavelli, I., Rossi, L., Pederson, J. Z., Melino, G., Weser, U. and Rotilio, E. (1990) Cytotoxicity of a low molecular weight Cu2Zn2 superoxide dismutase active centre analogue in human erythroleukemia cells, Biochem. Pharm., 39, 1473–1479.

    Google Scholar 

  17. Shinar, E., Rachmilewitz, E. A., Shifter, A., Rahamin, E. and Saltman, P. (1989) Oxidative damage to human red cells induced by copper and iron complexes in the presence of ascorbate, Biochim Biophys Acta, 1014, 66–72.

    Article  PubMed  CAS  Google Scholar 

  18. Burkitt, M. J., Tsang, S. Y., Tam; S. C. and Bremner, I. (1995) Generation of 5,5-dimethyl-l-pyrroline N-oxide hydroxyl and scavenger radical adduct from copper/H2O2 mixtures: effects of metal ion chelation and the search for high-valent metal-oxygen intermediates, Arch. Biochem. Biophys., 323, 6370.

    Google Scholar 

  19. Gilbert, B. C., Scrivens, G. and Lee, T. C. P. (1995) EPR studies of the copper-catalysed oxidation of thiols with peroxides J. Chem. Soc. Perkin Trans. 2,995–963.

    Google Scholar 

  20. Davis, F. J., Gilbert, B. C., Norman, R. O. C. and Symons, M. C. R. (1983) ESR studies part 66. Characterisation of copper(II) complexes in the oxidation of D-penicillamine, L-cysteine and related sulphur-containing compounds, J. Chem. Soc. Perkin Trans. 2, 1763–1771.

    Google Scholar 

  21. Gunther, M. R., Hanna, P. M., Mason, R. P. and Cohen, M. S. (1995) Hydroxyl radical formation from cuprous ion and hydrogen peroxide: a spin-trapping study, Arch. Biochem. Biophys., 316, 515–522.

    Article  PubMed  CAS  Google Scholar 

  22. Smith, R. C., Reed, V. D. and Hill, W. E. (1994) Oxidation of thiols by copper(II), Phosphorus, Sulphur and Silicon, 90, 147–154.

    Article  CAS  Google Scholar 

  23. McConnell, H. and Davison, N. (1950) Optical interaction between the chloro-complexes of copper(I) and copper(II) in solutions of unit ionic strength, J. Am. Chem. Soc., 72, 3168–3173.

    Article  CAS  Google Scholar 

  24. Laurie, S. H., Lund, T. and Raynor, J. B. (1975) Electronic absorption and electron spin resonance studies on the interaction between the biologically relevant copper(II) glycylglycine and L-histidine complexes with D-penicillamine, J. Chem. Soc. Dalton Trans., 1389–1394; Kaim, W. and Schwederski, B. (1994) Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, John Wiley and Sons Ltd, Chichester, UK.

    Google Scholar 

  25. Bard, A. J.,Parsons, R. and Jordan, J. (1985) Standard Potentials in Aqueous Solution,Marcel Dekker Inc, New York.

    Google Scholar 

  26. Creighton, J. A. and Lippincot, E. R. (1963) Raman spectra and solvent extractions of cuprous halides, J. Chem. Soc., 5134–5136; Specker, H. and Pappert, W. (1965) Extracted halo compounds of Cu, Ag, Au and TI, Z. Anorg. Allgem. Chem., 341, 287–292.

    Google Scholar 

  27. Gill, J. T., Mayerle, J. J., Welcker, P. S., Lewis, D. F., Ucko, D. A., Barton, D. J., Stowens, D. and Lippard, S. J. (1976) Structural determinations of four mono-and binuclear tertiary phosphine and arsine complexes of copper(I) chloride, Inorg. Chem., 15, 1155–1168.

    Google Scholar 

  28. Nicol, M. J. (1982) Kinetics of the oxidation of copper(I) by hydrogen peroxide in acidic chloride solutions, S. Afr. J. Chem., 35, 77–79.

    CAS  Google Scholar 

  29. Gilbert, B. C., Norman, R. O. C. and Sealy, R. C. (1975) Electron spin resonance studies part XLIV. The formation of alkyl-sulphonyl radicals by the oxidation of aliphatic sulphoxides with the hydroxyl radical and by the reaction of alkyl radicals with sulfur dioxide, J. Chem. Soc. Perkin Trans. 2, 308312; Gilbert, B. C. Laue, H. A. H., Norman, R. O. C. and Sealy. R. C. (1975) Electron spin resonance studies part XLVI. Oxidation of thiols and disulphides in aqueous solution: formation of RS., RSO., RSO2., RSSR• and carbon radicals, J. Chem. Soc. Perkin Trans. 2, 892–900.

    Google Scholar 

  30. Erben-Russ, M., Michel, C., Bors, W. and Saran, M.. (1987) Absolute rate constants of alkoxyl radical reactions in aqueous solution, J. Phys. Chem., 91, 2362–2365.

    Article  CAS  Google Scholar 

  31. Bors, W., Michel, C. and Stettmaier, K. (1992) Radical species produced from the photolytic and pulseradiolytic degradation of tert-butyl hydroperoxide. An EPR spin-trapping investigation, J Chem Soc. Perkin Trans. 2, 1513–1517.

    Google Scholar 

  32. R. C. Weast (ed) (1977) CRC Handbook of Chemistry and Physics,58th Edition, CRC Press, D171.

    Google Scholar 

  33. Martell, A. E. and Smith, R. M. (1979) Critical Stability Constants, Plenum Press, 3, 264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gilbert, B.C., Harrington, G., Scrivens, G., Silvester, S. (1997). EPR Studies of Fenton-Type Reactions in Copper- Peroxide Systems. In: Minisci, F. (eds) Free Radicals in Biology and Environment. NATO ASI Series, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1607-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1607-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4831-8

  • Online ISBN: 978-94-017-1607-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics