Skip to main content

Molecular Pathology of Oxidative Damage Induced by the Myeloperoxidase System of Activated Phagocytes

  • Chapter
Free Radicals in Biology and Environment

Part of the book series: NATO ASI Series ((ASHT,volume 27))

  • 344 Accesses

Abstract

Oxidant generation is implicated as a major contributor to aging and the degenerative diseases of the aging process (1,2). However, the physiologically relevant mechanisms for oxidative damage have not yet been identified. A potential pathway involves activated phagocytic white blood which employ a membrane-associated NADPH oxidase to generate superoxide (3,4). Superoxide spontaneously or enzymatically dismutates to form hydrogen peroxide. In vitro studies suggest that hydrogen peroxide alone is a relatively unreactive oxidant. However, the oxidative potential of hydrogen peroxide is amplified by myeloperoxidase, a secreted heme protein (3,4). The enzyme represents an attractive candidate for monitoring phagocyte-mediated damage because it generates several distinct oxidants that covalently modify cellular targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stadtman, E. R. (1992) Protein oxidation and aging, Science 257, 1220–1224.

    Article  PubMed  CAS  Google Scholar 

  2. Ames, B. N., Shigenaga, M. K., and Hagen, T. M. (1993) Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl. Acad. Sci. 90, 7915–7922.

    Article  PubMed  CAS  Google Scholar 

  3. Klebanoff, S. J. (1980) Oxygen metabolism and the toxic properties of phagocytes, Ann. Intern. Med. 93, 480–489.

    PubMed  CAS  Google Scholar 

  4. Hurst, J. K. and Barrette Jr., W. C. (1989) Leukocytic oxygen activation and microbicidal oxidative toxins, CRC Crit Rev Biochem Mol Biol 24, 271–328.

    Article  CAS  Google Scholar 

  5. Berliner, J. A. and Heinecke, J. W. (1996) The role of oxidized lipoproteins in atherogenesis, Free Rad. Biol. Med. 20: 707–727.

    Article  PubMed  CAS  Google Scholar 

  6. Rosenfeld, M. E., Palinski, W.,Ylaherttuala, S., Butler, S. and Witztum, J. L. (1990). Distribution of oxidation specific lipid-protein adducts and apolipoprotein-B in atherosclerotic lesions of varying severity from WHHL rabbits, Arterioscler. 10, 336–349.

    Article  CAS  Google Scholar 

  7. Steinberg, D. (1995) Clinical trials of antioxidants in atherosclerosis: Are we doing the right thing? Lancet 346, 36–38.

    Article  PubMed  CAS  Google Scholar 

  8. Stephens, N. G., Parsons, A., Schofield, P. M.,Kelly, F., Cheeseman, K., Mitchinson, M. J. and Brown, M. J. (1996) Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS), Lancet 347, 781–786.

    Article  Google Scholar 

  9. Nauseef, W. M. (1988) Myeloperoxidase deficiency–phagocytic defects I: Abnormalities outside of the respiratory burst, Hematology/Oncology Clinics of North America 2, 135–158.

    PubMed  CAS  Google Scholar 

  10. Daugherty, A.,Dunn, J. L., Rateri, D. L., and Heinecke, J. W. (1994) Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions, J. Clin. Inv. 94, 437–444.

    Article  Google Scholar 

  11. Harrison, J. E. and Schultz, J. (1976) Studies on the chlorinating activity of myeloperoxidase, J. Biol. Chem. 251, 1371–1374.

    PubMed  CAS  Google Scholar 

  12. Thomas, E. L., Grisham, M. B. and Jefferson, M. M. (1986) Preparation and characterization of chloramines, Meth. in Enzymol. 132, 569–585.

    Google Scholar 

  13. Prince, R. C. (1988) Tyrosine radicals, Trends Biochem. Sci. 13, 286–288.

    Article  PubMed  CAS  Google Scholar 

  14. Anderson, S. O. (1966) Covalent cross-links in a structural protein, Resilin, Acta. Physiol. Scand. 66: 1–81.

    Article  Google Scholar 

  15. Heinecke, J. W., Li, W., Daehnke, H. L.,. III and Goldstein, J. A. (1993) Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages, J. Biol. Chem. 268, 4069–4077.

    Google Scholar 

  16. Heinecke, J. W., Li, W., Francis, G. A. and Goldstein, J. A. (1993) Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative crosslinking of proteins, J. Clin. Invest. 91, 2866–2872.

    Article  Google Scholar 

  17. Francis, G. A., Mendez, A. J., Bierman E. L., and Heinecke, J. W. (1993) Oxidative tyrosylation of high density lipoprotein by peroxidase enhances cholesterol removal from cultured fibroblasts and macrophage foam cells, Proc. Natl. Acad. Sci. 90, 6631–6635.

    Article  Google Scholar 

  18. Savenkova, M. I., Mueller, D. M. and Heinecke, J. W. (1994) Tyrosyl radical generated by myeloperoxidase is a physiological catalyst for the initiation of lipid peroxidation in low density lipoprotein, J. Biol. Chem. 269, 20394–20400.

    PubMed  CAS  Google Scholar 

  19. Sepe, S. M. and Clark, R. A. (1985) Oxidant membrane injury by the neutrophil myeloperoxidase system II, J. Immunol. 134, 1896–1901.

    PubMed  CAS  Google Scholar 

  20. VandenBerg, J. J. M., Winterboum, C. C. and Kuypers, F. A. (1993) Hypochlorous acid-mediated modification of cholesterol and phospholipid, J. Lipid Res. 34, 2005–2012.

    Google Scholar 

  21. Heinecke, J. W., Li, W., Mueller, D. M., Bohrer, A. and Turk, J. (1994) Cholesterol chlorohydrin synthesis by the myeloperoxidase-hydrogen peroxide-chloride system: Potential markers for lipoproteins oxidatively damaged by phagocytes. Biochem. 33, 10127–10136.

    Article  CAS  Google Scholar 

  22. Hazen, S. L., Hsu, F. F., Duffin, K. and Heinecke, J. W. (1996) Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes converts low density lipoprotein cholesterol into a family of chlorinated sterols, J. Biol. Chem.,in press.

    Google Scholar 

  23. Hazell, L. J., VandenBerg, J. J. M., and Stocker, R. (1994) Oxidation of low-density lipoprotein by hypochlorite causes aggregation that is mediated by modification of lysine residues rather than by lipid oxidation, Biochem. J. 302, 297–304.

    Google Scholar 

  24. Hazell, L. J., Arnold, L., Flowers, D., Waeg, G., Malle, E., and Stocker, R. (1996) Presence of hypochlorite-modified proteins in human atherosclerotic lesions, J. Clin. Inv. 97, 1535–1544.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heinecke, J.W. (1997). Molecular Pathology of Oxidative Damage Induced by the Myeloperoxidase System of Activated Phagocytes. In: Minisci, F. (eds) Free Radicals in Biology and Environment. NATO ASI Series, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1607-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1607-9_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4831-8

  • Online ISBN: 978-94-017-1607-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics