Skip to main content

Ammonium assimilation in root nodules of actinorhizal Discaria trinervis. Regulation of enzyme activities and protein levels by the availability of macronutrients (N, P and C)

  • Conference paper
  • 166 Accesses

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 100))

Abstract

Asparagine was found to be the main N compound exported from Discaria trinervis nodules. Aspartate (Asp), glutamate (Glu), alanine (Ala) and serine (Ser) were also detected in root xylem sap, but at lower concentrations. A comparable picture is found in nodulated alfalfa. We hypothesized that a similar set of enzymes for Asn synthesis was present in D. trinervis nodules. We demonstrate the expression of most of the enzymes involved in the synthesis of Asn from NH +4 and oxoacids, in nodules — but not in roots — of fully symbiotic D. trinervis. By complementation of enzyme assays (A) and immunodetection (I) we detected glutamane-synthetase (GSA.I), Asp-aminotransferase (AATA), malate-dehydrogenase (MDHA.I, at least two isoforms), Glu-dehydrogenase (GDHA), Glu-synthase (GOGATI) and Asn-synthetase (ASI). PEP-carboxylase (PEPC) activity was not detected. We previously shown that N acts as a negative regulator of nodulation and nodule growth, while P is a strong stimulator for nodule growth. We present data on the regulation of nodule N metabolism by altering, during 4 weeks, the availability of N, P and light in symbiotic D. trinervis. NH4NO3 (2 mM) induced inactivation and degradation of nodule GS, MDH and AS, but activation of GDH and AAT; the amount of nitrogenase components was not affected. A 10-fold increase in P supply did not greatly affect activity and amount of enzymes, suggesting that N metabolism is not P-limited in nodules. On the other hand, suppression of P supply induced an important reduction of nodule GS, GOGAT, MDH and AS protein levels, although nitrogenase was not affected. GDH was the only measured activity that was stimulated by limiting P supply. Shading plants did result in complete degradation of nitrogenase and partial degradation of GS, AS and nodule-specific MDH isoform, but GDH and AAT were activated. These results are discussed in connection with the regulation of nodulation and nodule growth in D. trinervis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

GS:

glutamine synthetase

GDH:

NADH-dependent glutamate dehydrogenase

GOGAT:

glutamate synthase

AAT:

aspartate aminotransferase

AS:

asparagine synthetase

MDH:

malate dehydrogenase

PEPC:

phosphoenolpyruvate carboxylase

SS:

sucrose synthase

References

  • Almeida J P F, Hartwig U A, Frehner M, Nösberger J and Lüscher A 2000 Evidence that P deficiency induces feedback regulation of symbiotic nitrogen fixation in white clover (Rif - Whim repens L.). J. Exp. Bot. 51, 1289–1297.

    Article  PubMed  CAS  Google Scholar 

  • Anderson M P, Vance C P, Heichel G H and Miller S S 1989. Purification and characterization of NADH-Glu synthase from alfalfa root nodules. Plant Physiol. 90, 351–358.

    Article  PubMed  CAS  Google Scholar 

  • Baker A and Parsons R 1997 Rapid assimilation of recently fixed N2 in root nodules of Myrica gale. Physiol. Plant. 99, 640–647.

    Article  CAS  Google Scholar 

  • Blake M S, Johnston K H, Russell-Jones G J and Gotschlich E C 1984 A rapid, sensitive method for detection of alkaline phosphatase conjugated anti-antibody on western blots. Anal. Biochem. 136, 175–79.

    Article  PubMed  CAS  Google Scholar 

  • Blom J, Roloefsen W and Akkermans A D L 1981 Assimilation of nitrogen in root nodules of alder (Alnus glutinosa). New. Phytol. 89, 321–326.

    Article  CAS  Google Scholar 

  • Burnette W N 1981 `Western blotting’: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated Protein A. Anal. Biochem. 112, 195–203.

    Google Scholar 

  • Chaia E 1998 Isolation of an effective strain of Frankia from nodules of Discaria trinervis (Rhamanceae). Plant Soil 205, 99–102.

    Article  CAS  Google Scholar 

  • Cullimore J V and Miflin B J 1984 Immunological studies on glutamine synthetase using antisera raised to the two plant forms of the enzyme from Phaseolus vulgaris root nodules. J. Exp. Bot. 35, 581–587.

    Article  CAS  Google Scholar 

  • Chopra J, Kaur N and Gupta A K 1998 Carbohydrate status and sucrose metabolism in mungbcan roots and nodules. Phytochemistry. 49, 1891–1895.

    Article  CAS  Google Scholar 

  • Egli M A, Griffith S M, Miller S S, Anderson M P and Vance C P 1989 Nitrogen assimilating enzyme activities and enzyme protein during development and senescence of effective and plant gene-controlled ineffective alfalfa nodules. Plant Physiol. 91, 898–904.

    Article  PubMed  CAS  Google Scholar 

  • Gantt J S, Larson R J, Farnham M W, Pathirana S M, Miller S S and Vance C P 1992 Aspartate aminotransferase in effective and ineffective alfalfa nodules. Cloning of a eDNA and determination of enzyme activity, protein, and mRNA levels. Plant Physiol. 98, 868–878.

    Article  PubMed  CAS  Google Scholar 

  • Gordon A J 1991 Enzyme distribution between the cortex and the infected region of soybean nodules. J. Exp. Bot. 42, 961–967.

    Article  CAS  Google Scholar 

  • Gordon A J 1992 Carbon metabolism in the legume nodule. In Carbon Partitioning Within and Between Organisms. Eds. C L Pollok, J F Farrar and A J Gordon. pp. 133–162. Bios Scientific Publishers, Oxford, UK.

    Google Scholar 

  • Gordon A J, Minchin F R, James C L and Komina O 1999 Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol. 120, 867–877.

    Article  PubMed  CAS  Google Scholar 

  • Guars C, Ribeiro A, Akkermans A D L, Jing Y, van Kammen A, Bisseling T and Pawlowski K 1996 Nitrogen metabolism in actinorhizal nodules of Alnus glutinosa: Expression of glutamine synthetase and acetylomithine transaminase. Plant Mol. Biol. 32, 1177–1184.

    Google Scholar 

  • Hirel B, Perrot-Rechenmann C and Gadal P 1982 Glutamine synthetase in alder (Alnus glutinosa) root nodules. Purification, properties and cytoimmunochemical localization. Physiol. Plant. 55, 197–203.

    Article  CAS  Google Scholar 

  • Iluss-Danell K 1978 Nitrogenase activity measurements in intact plants of Alnus incana. Physiol. Plant. 43, 372–376.

    Article  Google Scholar 

  • Huss-Danell K 1990 The physiology of actinorhizal nodules. In The Biology of Frankia and Actinorhizal Plants. Eds. C R Schwintzer and J D Tjepkma. pp. 129–150. Academic Press, San Diego, USA.

    Google Scholar 

  • Israel D W 1987 Investigation of the role of phosphorus in symbiotic nitrogen fixation. Plant Physiol. 84, 835–840.

    Article  PubMed  CAS  Google Scholar 

  • Jackson M L 1958 Soil chemical analysis. Prentice Hall, Inc., Englewood Cliffs, New Jersey, USA. Sections 8–13 and 8–33.

    Google Scholar 

  • Johnson J F, Vance C P and Allan D L 1996 Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol. 112, 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U K 1970 Cleavage of structural proteins during the assembly of the head of bactériophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lam H M, Coschigano K T, Oliveira I C, Melo-Oliveira R and Coruzzi G 1996 The molecular genetics of nitrogen assimilation into amino acids in higher plants. Ann. Rev. Plant Physiol. Mol. Biol. 47, 569–593.

    Article  CAS  Google Scholar 

  • Lancien M, Gadal P and Hodges M 2000 Enzyme redundancy and the importance of 2-oxoglutarate in higher plant ammonium assimilation. Plant Physiol. 123, 817–824.

    Article  PubMed  CAS  Google Scholar 

  • Loulakakis K A and Roubelakis-Angelakis K A 1990 Immunocharacterization of NADH-glutamate dehydrogenase from Vitis vinîfera L. Plant Physiol. 94, 109–1 13.

    Article  Google Scholar 

  • Lundquist P 0 and Huss-Danell K 1991a Nitrogenase activity and amounts of nitrogenase proteins in a Frankia-Alnus incana symbiosis subjected to darkness. Plant Physiol. 95, 808–813.

    Article  PubMed  CAS  Google Scholar 

  • Lundquist P O and Huss-Danell K 199 lb Response of nitrogenase to altered carbon supply in a Frankia-Alnus incana symbiosis. Physiol. Plant. 83,331–338.

    Google Scholar 

  • Lundquist P O and Huss-Danell K 1992 Immunological studies of glutamine synthetase in Frankia-Alnus incana symbiosis. FEMS Microbiol. Let. 91, 141–146.

    CAS  Google Scholar 

  • Mc Clure P R. Coker III G T and Schubert K R 1983 Carbon dioxide fixation in roots and nodules of Alnus glutinosa. Plant Physiol. 71, 652–657.

    Google Scholar 

  • Miller S S, Boylan K L M and Vance C P 1987 Alfalfa root nodule CO2 fixation. III. Immunological studies of nodule phosphoenolpyruvate carboxylasc. Plant Physiol. 84, 501–508.

    Article  PubMed  CAS  Google Scholar 

  • Miller S S, Driscoll B T, Gregerson R G, Gantt J S and Vance C P 1998 Alfalfa malate dehydrogenase (MDH): Molecular cloning and characterization of five different forms reveals a unique nodule enhanced MDH. Plant J. 15, 173–184.

    Article  PubMed  CAS  Google Scholar 

  • Parsons R, Stanforth A, Raven J A and Sprent J 11993 Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen. Plant Cell Env. 16, 125–136.

    Google Scholar 

  • Pathirana S M, Vance C P, Miller S S and Gantt J S 1992 Alfalfa root nodule phosphoeno/pyruvate carboxylase: characterization of the eDNA and expression in effective and plant-controlled ineffective nodules. Plant Mol. Biol. 20, 437–450.

    CAS  Google Scholar 

  • Postgate J 1998 Nitrogen fixation. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Romagni J G and Dayan F E 2000 Measuring asparagine synthetase activity in crude plant extracts. J. Agric. Food Chem. 48, 1692–1696.

    Article  PubMed  CAS  Google Scholar 

  • Romanov V I, Gordon A J, Minchin F R, Witty J F, Skot L, James C L and Tikhonovich IA 1998 Physiological and biochemical characteristics of FN I, a `fixation impaired’ mutant of pea (Pisum sativum L.). J. Exp. Bot. 49, 1789–1796.

    CAS  Google Scholar 

  • Schubert K R 1986 Products of biological nitrogen fixation in higher plants: Synthesis, transport, and metabolism. Annu. Rev. Plant Physiol. 37, 539–574.

    Article  CAS  Google Scholar 

  • Sellstedt A and Atkins C A 1991 Composition of amino compounds transported in xylem of Casuarina sp. J. Exp. Bot. 42, 1493–1497.

    Article  CAS  Google Scholar 

  • Shi L, Twary S N, Yoshioka H, Gregerson R G, Miller S S, Samac D A, Gantt J S, Unkefer P J and Vance C P 1997 Nitrogen assimilation in alfalfa: isolation and characterization of an asparagine synthetase gene showing enhanced expression in root nodules and dark-adapted leaves. Plant Cell 9, 1339–1356.

    Google Scholar 

  • Smith P K, Krohn R 1, Hermanson G T, Mallia A K, Gartner F H, Provenzano M D, Fujimoto E K, Goeke N M, Olson B J and Klenk D C 1985 Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava H S and Singh R P 1987 Role and regulation of L-glutamate dehydrogenase activity in higher plants. Phytochemistry. 26, 597–610.

    Article  CAS  Google Scholar 

  • Temple S J, Vance C P and Gantt J S 1998 Glutamate synthase and nitrogen assimilation. Trends Plant Sci. 3, 51–56.

    Article  Google Scholar 

  • Trepp G B, Plank D W, Gantt J S and Vance C P 1999a NADHGlutamate synthase in alfalfa root nodules. Inmunocytochemical localization. Plant Physiol. 119, 829–837.

    Article  PubMed  CAS  Google Scholar 

  • Trepp G B, Temple S J, Bucciarclli B, Shi L F and Vance C P 19996 Expression map for genes involved in nitrogen and carbon metabolism in alfalfa root nodules. Mol. Plant Microbe Inter. 12, 526–535.

    Google Scholar 

  • Valverde C 2000 Regulation de la nodulation radicular en la simbiosis Discaria trinervis — Frankia. Ph.D. Thesis, Universidad Nacional de La Plata, Argentina.

    Google Scholar 

  • Valverde C, Ferrari A and Wall L G 2002 Phosphorus and the regulation of nodulation in the actinorhizal symbiosis between Discaria trinervis and Frankia. New Phytol. 153, 43–52.

    Article  CAS  Google Scholar 

  • Valverde C and Wall L G 1999a Regulation of nodulation in Dis-caria trinervis (Rhamnaceae) — Frankia symbiosis. Can. J. Bot. 77, 1302–1310.

    Google Scholar 

  • Valverde C and Wall L G 1999b Time course of nodule development in Discaria trinervis (Rhamnaceae) — Frankia symbiosis. New Phytol. 141, 345–354.

    Article  Google Scholar 

  • Valverde C and Wall L G 2003 The regulation of nodulation, nitrogen fixation and ammonium assimilation under a carbohydrate shortage stress in the Discaria trinervis-Frankia symbiosis. Plant Soil 254, 155–165.

    Article  CAS  Google Scholar 

  • Valverde C, Wall L G and Huss-Danell K 2000 Regulation of nodulation and nodule mass relative to nitrogenase activity and nitrogen demand in seedlings of Discaria trinervis (Rhamnaceae). Symbiosis 28, 49–62.

    CAS  Google Scholar 

  • van Ghelue M, Ribeiro A. Solheim B, Akkermans A D L. Bisseling T and Pawlowski K 1996 Sucrose synthase and enolase expression in actinorhizal nodules of Alnus glutinosa: comparison with legume nodules. Mol. Gen. Genet. 250, 437–446.

    Google Scholar 

  • Vance C P 2000 Amide biosynthesis in root nodules of temperate legumes. In Prokaryotic Nitrogen Fixation: a Model System for Analysis of a Biological Process. Ed. E W Triplett. pp. 589–607. Horizon Scientific Press, Wymondham, UK.

    Google Scholar 

  • Wall L G 2000 The actinorhizal symbiosis. J. Plant Growth Reg. 19, 167–182.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Valverde .

Editor information

P. Normand J. O. Dawson K. Pawlowski

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Valverde, C., Wall, L.G. (2003). Ammonium assimilation in root nodules of actinorhizal Discaria trinervis. Regulation of enzyme activities and protein levels by the availability of macronutrients (N, P and C). In: Normand, P., Dawson, J.O., Pawlowski, K. (eds) Frankia Symbiosis. Developments in Plant and Soil Sciences, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1601-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1601-7_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6380-9

  • Online ISBN: 978-94-017-1601-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics