Skip to main content

Geometry of Fracture Networks

  • Chapter

Part of the book series: Theory and Applications of Transport in Porous Media ((TATP,volume 15))

Abstract

This chapter is devoted to the geometrical properties of fracture networks, with the purpose of describing the relevant characteristics for predictions of their transport properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelin H., Birgersson L., Gidlund J. and Neretnieks I., 1991. A large-scale flow and tracer esperiment in granite 1. Experimental design and flow distribution, Water Resours. Res, 27, 3107–3117.

    Article  Google Scholar 

  • Acura J.A. and Yortsos Y.C., 1995. Application of fractal geometry to the study of networks of fractures and their pressure transient, Water Resours. Res, 31, 527–540.

    Article  Google Scholar 

  • Adler P.M., 1992. Porous Media: Geometry and Transports, Butterworth/ Heinemann, Stoneham, MA.

    Google Scholar 

  • Alon U., Balberg I. and Drory A., 1991. New, heuristic,percolation criterion for continuum systems, Phys. Rev. Lett., 66, 2879–2882.

    Article  Google Scholar 

  • Andersson J. and Dverstorp B., 1987. Conditional simulations of fluid flow in threedimensional networks of discrete fractures, Water Resours. Res, 23, 1876–1886.

    Article  Google Scholar 

  • Andersson J., Shapiro A.M. and Bear J., 1984. A stochastic model of a fractured rock conditioned by measured information, Water Resours. Res, 20, 79–88.

    Article  Google Scholar 

  • Andersson J. and Thunvik R., 1986. Predicting mass transport in discrete fracture networks with the aid of geometrical field data, Water Resours. Res, 22, 1941–1950.

    Article  Google Scholar 

  • Balberg I., 1985. Universal percolation threshold limits in the continuum, Phys. Rev., B31, 4053–4055.

    Article  Google Scholar 

  • Balberg I., 1987. Recent developments in continuum percolation, Phil. Mag., B56, 991 1003.

    Google Scholar 

  • Balberg I., Anderson C.H., Alexander S. and Wagner N., 1984. Excluded volume and its relation to the onset of percolation, Phys. Rev., B30, 3933–3943.

    Article  Google Scholar 

  • Barrett L.K. and Yust C.S., 1970. Some fundamental ideas in topology and their application to problems in metallography, Metallography, 3, 1–33.

    Article  Google Scholar 

  • Barthélémy P., 1992. Etude de la géométrie des réseaux de fractures naturelles à différentes échelles, Ph.D. Thesis, Paris.

    Google Scholar 

  • Barthélémy P., Jacquin C., Yao J., Thovert J.-F. and Adler P.M., 1996. Hierarchical structures and hydraulic properties of a fracture network in the Causse of Larzac, J. of Hydrology, 187, 237–258.

    Article  Google Scholar 

  • Barton C.0 and Larsen E., 1985. Fractal geometry of two-dimensional fracture networks at Yucca Mountain, southwestern Nevada, in Proc. Int. Syrup. Fundamentals of Rock Joints, Björkliden, 77–84.

    Google Scholar 

  • Beacher G.B. and Lanney N.A., 1978. Trace length biases in joint surveys, in Proc. 19th US Syrup. Rock Mech.,New York, 56–65.

    Google Scholar 

  • Beacher G.B., Lanney N.A. and Einstein H.H., 1977. Statistical description of rock properties and sampling, in Proc. 18th US Syrup. Rock Mech., Keyston, Connecticut, 5C1–8.

    Google Scholar 

  • Berkowitz B., 1995. Analysis of fracture network connectivity using percolation theory, Math. Geol., 27, 467–474.

    Article  Google Scholar 

  • Berkowitz B. and Adler P.M., 1998. Stereological analysis of fracture network structure in geological formations, J. Geophys. Res., B103, 15339–15360.

    Article  Google Scholar 

  • Berkowitz B. and Balberg I., 1993. Percolation theory and its application to groundwater hydrology, Water Resour. Res., 29, 775–794.

    Article  Google Scholar 

  • Berkowitz B. and Ewing R.P., 1998. Percolation theory and network modeling applications in soil physics, Surveys in Geophysics, 19, 23–72.

    Article  Google Scholar 

  • Berkowitz B. and Hadad A., 1997. Fractal and multifractal measures of natural and synthetic fracture networks, J. Geophys. Res., B102, 12205–12218.

    Article  Google Scholar 

  • Billaux D., Chiles J.P., Hestir K. and Long J., 1989. Three-dimensional statistical modelling of a fractured rock-mass–an example from the Fanay-Augères mine, Int. J. Rock Mech. Min. Sci. ê9 Geomech. Abstr., 26, 281–299.

    Article  Google Scholar 

  • Bour O. and Davy P., 1997. Connectivity of random fault networks following a power law fault length distribution, Water Resours. Res., 33, 1567–1583.

    Article  Google Scholar 

  • Cacas M.C., Ledoux E., de Marsily G., Tillie B., Barbeau A., Durand E., Feuga B. and Peaudecerf P., 1990. Modeling fracture flow with a stochastic discrete fracture network: calibration and validation. 1. The flow model, Water Resour. Res, 26, 479–489.

    Google Scholar 

  • Castaing C., Dutartre P., Gouyet J.-F., Loiseau P., Martin P. and Pointet T., 1989. Etude pluridisciplinaire d’un réseau de discontinuités-image SPOT en milieu granitique couvert, implications en hydrogéologie des milieux fissurés, Hydrogéologie, 1, 19–25.

    Google Scholar 

  • Castaing C., Halawani M.A., Gervais F., Chilès J.P., Genter A., Bourgine B., Ouillon G., Brosse J.M., Martin P., Genna A. and Janjou D., 1996. Scaling relationships in intraplate fracture systems related to Red Sea rifting, Tectonophysics, 261, 291–314.

    Article  Google Scholar 

  • Charlaix E., 1986. Percolation threshold of a random array of discs: a numerical simulation, J. Phys., A19, L533 - L536.

    Google Scholar 

  • Charlaix E., Guyon E. and Rivier N., 1984. A criterion for percolation threshold in a random array of plates, Solid State Commun., 50, 999–1002.

    Article  Google Scholar 

  • Childs C., Walsh J.J. and Watterson J., 1990. A method for estimation of the density of fault displacements below the limits of seismic resolution in reservoir formations, in North Sea Oil and Gas Reservoirs, II, edited by A.T. Buller et al., 309–318, Norw. Inst. of Technol., Graham and Trotman, London.

    Chapter  Google Scholar 

  • Chilès J.P., 1988. Fractal and geostatistical methods for modeling of a fracture network, Math. Geol., 20, 631–654.

    Article  Google Scholar 

  • Chilès J.P., 1989. Modélisation géostatistique de réseaux de fractures, in Proc. Sème Congrès International de Géostatistique, Avignon.

    Google Scholar 

  • Clemo T. and Smith L., 1997. A hierarchical model for solute transport in fractured media, Water Resours. Res., 33, 1763–1783.

    Article  Google Scholar 

  • Conrad F. and Jacquin C., 1973. Représentation d’un réseau bidimensionnel de fractures par un modèle probabiliste. Application au calcul des grandeurs géométriques des blocs matriciels, Rev. IFP, 28, 843–890.

    Google Scholar 

  • Cowie P.A., Knipe R.J. and Main I.G., 1996. Scaling laws for fault and fracture populations - Analyses and applications, Special issue of J. Structural Geology, 2/2–3.

    Google Scholar 

  • Crosta G., 1997. Evaluating rock mass geometry from photographic images, Rock Mech. Rock Engng., 30, 35–38.

    Article  Google Scholar 

  • Cruden D.M., 1977. Describing the size of discontinuities, Int. J. Rock Mech. Min. Sci. e.4 Geomech. Abstr., 14, 133–137.

    Article  Google Scholar 

  • Davy, P., 1993. On the frequency-length distribution of the San Andreas fault system, J. Geophys. Res., B98, 12141–12151.

    Article  Google Scholar 

  • de Hoff R.T. and Rhines F.N., 1968. Quantitative Microscopy, McGraw-Hill, New York, 1968.

    Google Scholar 

  • Dershowitz W.S. and Einstein H.H., 1988. Characterizing rock joint geometry with joint system models, Rock Mech. Rock Engng., 21, 21–51.

    Article  Google Scholar 

  • Drory A., 1996. Theory of continuum percolation. I. General formalism, Phys. Rev., E54, 5992–6002.

    Google Scholar 

  • Drory A., 1996. Theory of continuum percolation. II. Mean field theory, Phys. Rev., E54, 6003–6013.

    Google Scholar 

  • Drory A., Berkowitz B., Parisi G. and Balberg I., 1997. Theory of continuum percolation. III. Low-density expansion, Phys. Rev., E56, 1379–1395.

    Article  Google Scholar 

  • Dyke C.G., Wu B. and Milton-Taylor D., 1992. Advances in characterizing natural fracture permeability from mud log data, SPE Paper 25022, 63–73.

    Google Scholar 

  • Fredrich J.T., Menendez B. and Wong T.F., 1995. Imaging the pore structure of geomaterials, Science, 266, 276–279.

    Article  Google Scholar 

  • Garboczi E.J., Snyder K.A., Douglas J.-F. and Thorpe M.F., 1995. Geometrical percolation threshold of overlapping ellipsoids, Phys. Rev., E52, 819–828.

    Google Scholar 

  • Gautier, B.D.M. and Lake S.D., 1993. Probabilistic modeling of faults below the limit of seismic resolution in Pelican Field, North Sea, Offshore United Kingdom, Am. Assoc. Pet. Geol. Bull., 77, 761–777.

    Google Scholar 

  • Genter A., Traineau H., Dezayes Ch., Elsass Ph., Ledesert B., Meunier A. and Villemin Th., 1995. Fracture analysis and reservoir characterization of the granitic basement in the HDR Soultz Project (France), Geotherm. Sci. 6 Tech., 4, 189–214.

    Google Scholar 

  • Gertsch L.S., 1995. Three-dimensional fracture network models from laboratory-scale rock samples, Int. J. Rock Mech. Min. Sci. 6 Geomech. Abstr., 32, 85–91.

    Article  Google Scholar 

  • Gervais F., 1993. Modélisation géométrique d’un réseau de fractures dans un massif rocheux stratifié, application aux carrières marbrières de Comblanchien, Ph.D. Thesis, ENSM, Paris.

    Google Scholar 

  • Gillepsie P.A., Howard C.B., Walsh J.J. and Watterson J., 1993. Measurement and characterization of spatial distributions of fractures, Tectonophysics, 226, 113–141.

    Article  Google Scholar 

  • Gokhale A.M., 1996. Estimation of bivariate size and orientation distribution of microcracks, Acta Mater., 44, 475–485.

    Article  Google Scholar 

  • Gonzalez-Garcia R., Huseby O., Ledésert B., Thovert J.-F. and Adler P.M., 1998. Three-dimensional characterization of a fractured granite and transport properties, in preparation.

    Google Scholar 

  • Gudmunsson, A., 1987. Geometry, formation and development of tectonic fractures on the Reykjanes Peninsula, southwest Iceland, Tectonophysics, 139, 295–308.

    Article  Google Scholar 

  • Haan S.W. and Zwanzig R., 1977. Series expansions in a continuum percolation problem, J. Phys., A10, 1547–1555.

    Google Scholar 

  • Hestir K. and Long J.C.S., 1990. Analytical expressions for the permeability of random two-dimensional Poisson fracture networks based on regular lattice percolation and equivalent media theories, J. Geophys. Res., B95, 21565–21581.

    Article  Google Scholar 

  • Huseby O. K., 1996. Geometrical studies of complex geological media using scaling laws, Ph.D. Thesis, University of Oslo, Oslo.

    Google Scholar 

  • Huseby O., Thovert J.-F. and Adler P.M., 1997. Geometry and topology of fracture systems, J. Phys., A30, 1415–1444.

    Google Scholar 

  • Isihara A., 1950. Determination of molecular shape by osmotic measurement, J. Chem. Phys., 18, 1446–1449.

    Article  Google Scholar 

  • Jacquin C.G. and Adler P.M., 1987. Fractal porous media II. Geometry of porous geological structures, Transp. Porous Media, 2, 571–596.

    Google Scholar 

  • Koestler A.G. and Reksten K., 1992. Insight into the 3D fracture network of an exposed analogue of fractured chalk reservoirs - the Lägerdorf case, in Proc. Fourth North Sea Chalk Symposium, Deauville, France.

    Google Scholar 

  • Kulatilake P.H.S.W., Fiedler R. and Panda B.B., 1997. Box fractal dimension as a mea- sure of statistical homogeneity of jointed rock masses, Eng. Geol., 48, 217–229.

    Article  Google Scholar 

  • Lapointe P.R., Wallmann P C and Dershowitz W.S., 1993. Stochastic estimation of fracture size through simulated sampling, Int. J. Rock Mech. Min. Sci. e4 Geomech. Abstr., 30, 1611–1617.

    Article  Google Scholar 

  • Ledésert B., Dubois J., Genter A. and Meunier A., 1993. Fractal analysis of fractures applied to Soultz-sous-Forêts hot dry rock geothermal program, J. Volc. Geotherm. Res., 57, 1–17.

    Article  Google Scholar 

  • Ledésert B., Dubois J., Velde B., Meunier A., Genter A. and Badri A., 1993. Geometrical and fractal analysis of a three-dimensional hydrothermal vein network in a fractured granite, J. Volc. Geotherm. Res., 56, 267–280.

    Article  Google Scholar 

  • Lee J.-S., Veneziano D. and Einstein H.H., 1990. Hierarchical fracture trace model, in Rock Mechanics Contributions and Challenges, 261–268, Hustrulid and Johnson (eds), Balkema, Rotterdam

    Google Scholar 

  • Lin C. and Cohen M.H., 1982. Quantitative methods for microgeometric modeling, J. Appl. Phys., 53, 4152–4165.

    Article  Google Scholar 

  • Long J.C.S. and Billaux D.M., 1987. From field data to fracture network modeling: an exemple incorporating spatial structure, Water Resours. Res., 23, 1201–1216.

    Article  Google Scholar 

  • Long J.C.S., Gilmour P. and Witherspoon P.A., 1985. A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures, Water Resour. Res., 21, 1105–1115.

    Article  Google Scholar 

  • Long, J.C.S., Remer J.S., Wilson C.R. and Witherspoon P.A., 1982. Porous media equivalents for networks of discontinuous fractures, Water Resour. Res., 18, 645–658.

    Article  Google Scholar 

  • MacDonald I.F., Kaufmann P.M. and Dullien F.A.L., 1986. Quantitative image analysis of finite porous media. I. Development of genus and pore map software, J. of Microsc., 144, 277–296.

    Article  Google Scholar 

  • MacDonald I.F., Kaufmann P.M. and Dullien F.A.L., 1986. Quantitative image analysis of finite porous media. II. Specific genus of cubic lattice models and Berea sandstone, J. of Microsc., 144, 297–316.

    Article  Google Scholar 

  • Main, I.G., Meredith P.G., Sammonds P.R. and Jones C., 1990. Influence of fractal flaw distributions on rock deformation in the brittle field, in Deformation Mechanisms, Rheology and Tectonics, edited by R.J. Knipe and E.H. Rutter, Geol. Spec. Publ. 54, 71–79, Geol. Soc. of London.

    Google Scholar 

  • Mauldon M., 1995. Keyblock probabilities and size distributions: a first model for impersistent 2D fractures, Int. J. Rock Mech. Min. Sci. ê.4 Geomech. Abstr., 32, 575–83.

    Article  Google Scholar 

  • Mauldon M. and Mauldon J.G., 1997. Fracture samplings on a cylinder: from scanlines to boreholes and tunnels, Rock Mech. Rock Engng., 30, 129–144.

    Article  Google Scholar 

  • Merceron T. and Velde B., 1991. Application of Cantor’s method for fractal analysis of fractures in the Toyoha Mine, Hokkaido, Japan, J. Geophys. Res., B96, 16641–16650.

    Article  Google Scholar 

  • Montemagno C.D. and Pyrak-Nolte L.J., 1995. Porosity of natural fracture networks, J. Geophys. Res., B22, 1397–1400.

    Google Scholar 

  • Morse, P.M. and Feshbach H., 1953. Methods of Theoretical Physics, McGraw-Hill, New York.

    Google Scholar 

  • Myer L.R., Cook N.G.W., Goodman R.E. and Tsang C.F., 1995. Fractured and jointed rock masses, Balkema, Rotterdam.

    Google Scholar 

  • Narr W. and Lerche I., 1984. A method for estimating subsurface fracture density in core, AAPG Bull., 68, 637–348.

    Google Scholar 

  • Norqvist A.W., Tsang Y.W., Tsang C.F., Dverstorp B. and Andersson J., 1992. A variable aperture fracture network model for flow and transport in fractured rocks, Water Resour. Res., 28, 1703–1713.

    Article  Google Scholar 

  • Odling N.E., 1992. Network properties of a two-dimensional natural fracture pattern, PAGEOPH., 138, 95–114.

    Article  Google Scholar 

  • O’Sullivan F., 1986. A statistical perspective on ill-posed inverse problems, Statistical Science, 1, 502–527.

    Article  Google Scholar 

  • Perfect E., 1997. Fractal models for the fragmentation of rocks and soils: a review, Eng. Geol., 48, 185–198.

    Article  Google Scholar 

  • Piggott A.R., 1997. Fractal relations for the diameter and trace length of disc-shaped fractures, J. Geophys. Res., B102, 18121–18125.

    Article  Google Scholar 

  • Pike G.E. and Seager C.H., 1974. Percolation and conductivity: A computer study. I, Phys. Rev., B10, 1421–1434.

    Article  Google Scholar 

  • Priest S.D. and Hudson J.A., 1976. Discontinuity spacings in rock, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 13, 135–148.

    Google Scholar 

  • Priest S.D. and Hudson J.A., 1981. Estimation of discontinuity spacing and trace length using scanline surveys, Int. J. Rock Mech. Min. Sci. €14 Geomech. Abstr., 18, 183–197.

    Article  Google Scholar 

  • Pyrak-Nolte L.J., Montemagno C.D. and Nolte D.D., 1997. Volumetric imaging of aperture distributions in connected fracture networks, J. Geophys. Res., B24, 2343–2346.

    Google Scholar 

  • Rivier N., Guyon E. and Charlaix E., 1985. A geometrical approach to percolation through random fractured rocks, Geol. Mag., 122, 157–162.

    Article  Google Scholar 

  • Robinson P.C., 1983. Connectivity of fracture systems–A percolation theory approach, J. Phys., A16, 605–614.

    Google Scholar 

  • Robinson P.C., 1984. Numerical calculations of critical densities for lines and planes, J. Phys., A17, 2823–2830.

    Article  Google Scholar 

  • Rouleau A. and Gale J.E., 1985. Statistical characterization of the fracture system in the Stripa granite, Sweden, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 22, 353–367.

    Article  Google Scholar 

  • Rouleau A. and Gale J.E., 1987. Stochastic discrete fracture simulation of groundwater flow into an underground excavation in granite, Int. J. Rock Mech. Min. Sci. €14 Geomech. Abstr., 24, 99–112.

    Article  Google Scholar 

  • Sahimi M., 1995. Flow and transport in porous media and fractured rocks, VCH, Weinheim

    Google Scholar 

  • Scholz C.H. and Cowie P.A., 1990. Determination of total strain from faulting using slip measurements, Nature, 346, 837–839.

    Article  Google Scholar 

  • Segall P. and Pollard D.D., 1983. Joint formation in granitic rock of the Sierra Nevada, Geol. Soc. Amer. Bull., 94, 563–575.

    Google Scholar 

  • Selyakov V.I. and Kadet V.V., 1997. Percolation models for transport in porous media with applications to reservoir engineering, Kluwer, Dordrecht.

    Google Scholar 

  • Sher H. and Zallen R., 1970. Critical density in percolation processes, J. Chem. Phys., 53, 3759–3761.

    Article  Google Scholar 

  • Snow D.T., 1969. Anisotropic permeability of fractured media, Water Resour. Res., 5, 1273–1289.

    Article  Google Scholar 

  • Stauffer D. and Aharony A., 1994. Introduction to Percolation Theory, 2nd edition, Taylor and Francis, Bristol.

    Google Scholar 

  • Thomas A., 1987. Structure fractale de l’architecture de champs de fractures en milieu rocheux, C. R. Acad. Sc. Paris, 304, 181–186.

    Google Scholar 

  • Thovert J.-F., Salles J. and Adler P.M., 1993. Computerized characterization of the geometry of real porous media: their discretization, analysis and interpretation, J. of Microscopy, 170, 65–79.

    Article  Google Scholar 

  • Vallejo L.E., 1997. Fractals in engineering geology, Special issue of Eng. Geol., 48/3–4.

    Google Scholar 

  • Velde B., Dubois J., Moore D. and Touchard G., 1990. Fractal patterns of fractures in granite, Earth and Planetary Sci. Lett., 104, 25–35.

    Article  Google Scholar 

  • Velde B., Dubois J., Touchard G. and Badri A., 1990. Fractal analysis of fractures in rocks: the Cantor’s Dust method, Tectonophysics, 179, 345–352.

    Article  Google Scholar 

  • Vignes-Adler M., Le Page A. and Adler P.M., 1991. Fractal analysis of fracturing in two African regions, from satellite imagery to ground scale, Tectonophysics, 196, 69–86.

    Article  Google Scholar 

  • Villemin T. and Sunwoo C., 1987. Distribution logarithmique des rejets et longueurs de failles: Exemple du Bassin houiller lorrain, C.R. Acad. Sci. Paris, 305, 1309–1312.

    Google Scholar 

  • Walsh J.J. and Watterson J., 1993. Fractal analysis of fracture patterns using the standard box-counting technique: valid and invalid methodologies, J. Structural Geology, 15, 1509–1512.

    Article  Google Scholar 

  • Warburton, P.M., 1980a. A stereological interpretation of joint trace data, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 17, 181–190.

    Article  Google Scholar 

  • Warburton, P.M., 1980b. Stereological interpretation of joint trace data: Influence of joint shape and implication for geological surveys, Int. J. Rock Mech. Min. Sci. f.4 Geomech. Abstr., 17, 305–3166.

    Article  Google Scholar 

  • Yielding G., Walsh J. and Watterson J., 1992. The prediction of small-scale faulting in reservoirs, FIRST BREAK, 10, 449–460.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Adler, P.M., Thovert, JF. (1999). Geometry of Fracture Networks. In: Fractures and Fracture Networks. Theory and Applications of Transport in Porous Media, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1599-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1599-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5192-9

  • Online ISBN: 978-94-017-1599-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics