Skip to main content

Part of the book series: Theory and Applications of Transport in Porous Media ((TATP,volume 15))

  • 595 Accesses

Abstract

The major objectives of this book are to determine the macroscopic properties of individual fractures and of collections of fractures that we shall call fracture networks. We shall also study the possible evolution of these objects, resulting from mechanical forces and deposition and/or dissolution processes. These problems have important fields of application. In the oil industry, it might be useful to exploit the presence of fractures in order to increase oil production. On the contrary, in the long-time storage of nuclear wastes, the passage of waste to the fracture network must be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler P.M., 1992. Porous Media: Geometry and Transports, Butterworth-Heinemann, Stoneham, MA.

    Google Scholar 

  • Ameen M.S., 1995. Fractography: fracture topography as a tool in fracture mechanics and stress analysis, The Geological Society, London.

    Google Scholar 

  • Balberg I., Binenbaum N. and Wagner N., 1984. Percolation thresholds in the three-dimensional sticks system, Phys. Rev. Lett., 52, 1465–1468.

    Article  Google Scholar 

  • Barenblatt G.I. and Zheltov I.P., 1960. Fundamental equations of filtration of homogeneous liquids in fissured rocks, Soviet Dokl. Akad. Nauk, 13, 545–548.

    Google Scholar 

  • Barenblatt G.I., Zheltov I.P. and Kochina I.N., 1960. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, Soviet Appl. Math. Mech. (P.M.M.), 24, 852–864.

    Google Scholar 

  • Barthélémy P., 1992. Etude de la géométrie des réseaux de fractures naturelles à différentes échelles, Ph.D. thesis, Université Paris-Sud d’Orsay.

    Google Scholar 

  • Barton N., Bandis S. and Bakhtar K., 1985. Strength, deformation and conductivity coupling of rock joints, Int. J. of Rock Mech. and Min. Sci. and Geomech. Abstr., 22, 122–140.

    Google Scholar 

  • Bear J., Tsang C.-F. and de Marsily G., 1993. Flow and contaminant transport in fractured rock, Academic Press, San Diego.

    Google Scholar 

  • Bour P. and Davy P., 1997. Connectivity of random faults following a power law fault length distribution, Water Resour. Res., 33, 1567–1583.

    Article  Google Scholar 

  • Brown S.R., 1987. Fluid flow through rock joints: the effect of fracture roughness, J. Geophys. Res., B92, 1337–1347.

    Article  Google Scholar 

  • Brown S.R. and Scholz C.H., 1985a. Closure of random elastic surfaces in contact, J. Geophys. Res., B90, 5531–5545.

    Article  Google Scholar 

  • Brown S.R. and Scholz C.H., 1985b. Broad bandwidth study of the topography of natural rock surfaces, J. Geophys. Res., B90, 12575–12582.

    Article  Google Scholar 

  • Cacas M.C., Ledoux E., de Marsily G., Tillie G., Barbreau A., Durand E., Feuga B. and Peaudecerf P., 1990a. Modeling fracture flow with a stochastic discrete fracture network: 1. The flow model, Water Resour. Res., 26, 479–489.

    Google Scholar 

  • Cacas M.C., Ledoux E., de Marsily G., Barbreau A., Calmels P., Gaillard B. and Margritta R., 1990b. Modeling fracture flow with a stochastic discrete fracture network: 2. The transport model, Water Resour. Res., 26, 491–500.

    Google Scholar 

  • Charlaix E., Guyon E. and Roux S., 1987. Permeability of a random array of fractures of widely varying apertures, Transp. Porous Media, 2, 31–43.

    Google Scholar 

  • Chilès J.-P. and de Marsily G., 1993. Models of fracture systems, in Bear J., Tsang C.-F., and de Marsily G., Flow and Contaminant Transport in Fractured Rock, Academic Press, San Diego.

    Google Scholar 

  • Conrad F. and Jacquin C., 1973. Représentation d’un réseau bidimensionnel de fractures par un modèle probabiliste. Application au calcul des grandeurs géométriques des blocs matriciels, Revue de l’I.F.P., 28, 843–890.

    Google Scholar 

  • Dienes J.K., 1981. Percolation theory and the permeability of fractured oil shales, Los Alamos Nat. Lab. Rept, LA 8553 PR.

    Google Scholar 

  • Edwards D.A., Brenner H. and Wasan D.T., 1991. Interfacial Transport processes and Rheology, Butterworth-Heinemann, Stoneham, MA.

    Google Scholar 

  • Gentier S., 1986. Morphologie et comportement hydromécanique d’une fracture naturelle dans le granit sous contrainte normale, Ph.D. Thesis, Université d’Orléans.

    Google Scholar 

  • Koudina N., Gonzalez Garcia R., Thovert J.-F. and Adler P.M., 1998. Permeability of three-dimensional fracture networks, Phys. Rev., E57, 4466–4479.

    Google Scholar 

  • Kranz R.L., Frankel A.D., Engelder T. and Scholz C.H., 1979. The permeability of whole and jointed Barre granite, Int. J. of Rock Mech. and Min. Sci. and Geomech. Abstr., 16, 225–234.

    Article  Google Scholar 

  • Ledésert B., Dubois J., Velde B., Meunier A., Genter A. and Badri A., 1993. Geometrical and fractal analysis of a three-dimensional hydrothermal vein network in a fractured granite, J. Volcanology Geothermal Res., 56, 267–280.

    Article  Google Scholar 

  • Lévy T., 1988. Ecoulement d’un fluide dans un milieu poreux fissuré, C.R. Acad. Sci. Paris, 306, 1413–1417.

    Google Scholar 

  • Long J.C.S., Remer J.S., Wilson C.R. and Witherspoon P.A., 1982. Porous media equivalents for networks of discontinuous fractures, Water Resour. Res., 18, 645–658.

    Article  Google Scholar 

  • Long J.C.S., Chairwoman, 1996. Rock fractures and fluid flow, Nat. Acad. Press, Washington D.C.

    Google Scholar 

  • Moreno L., Tsang Y.W., Tsang C.F., Hale F.V. and Neretnieks I., 1988. Flow and tracer transport in a single fracture. A stochastic model and its relation to some field observations, Water Resour. Res., 24, 2033–2048.

    Article  Google Scholar 

  • Mourzenko V.M., Thovert J.-F. and Adler P.M., 1995. Permeability of a single fracture; Validity of the Reynolds equation, J. Phys. II, 5, 465–482.

    Article  Google Scholar 

  • Myer L.R., Tsang C.F., Cook N.G.W. and Goodman R.E., 1995. Fractured and jointed rock masses, Balkema, Rotterdam.

    Google Scholar 

  • Odeh A.S., 1965. Unsteady-state behaviour of naturally fractured reservoirs, Soc. Pet. Eng. J., 5, 60–66.

    Google Scholar 

  • Sahimi M., 1995. Flow and transport in porous media and fractured rock, VCH, Weinheim

    Google Scholar 

  • Schwartz F.W., Smith L. and Crowe A.S., 1983. A stochastic analysis of macroscopic dispersion in fractured media, Water Resour. Res., 19, 1253–1265.

    Article  Google Scholar 

  • Snow D.T., 1969. Anisotropic permeability of fractured media, Water Resour. Res., 5, 1273–1289.

    Article  Google Scholar 

  • van Golf-Racht T.D., 1982. Fundamentals of fractured reservoir engineering, Developments in Petroleum Science, 12, Elsevier, Amsterdam.

    Google Scholar 

  • Vignes-Adler M., Le Page A. and Adler P.M., 1991. Fractal analysis of the fracturing in two African regions, from the satellite imagery to ground scale, Tectonophysics, 196, 69–86.

    Article  Google Scholar 

  • Warren J.R. and Root P.J., 1963. The behaviour of naturally fractured reservoirs, Soc. Pet. Eng. J., 228, 245–255.

    Google Scholar 

  • Witherspoon P.A., Wang J.S.Y., Iwai K. and Gale J.E., 1980. Validity of cubic law for fluid flow in a deformable rock, Water Resours. Res., 16, 1016–1024.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Adler, P.M., Thovert, JF. (1999). Introduction. In: Fractures and Fracture Networks. Theory and Applications of Transport in Porous Media, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1599-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1599-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5192-9

  • Online ISBN: 978-94-017-1599-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics